对于此问题,可以以一种方式对给定的集合进行分区,以使每个子集的总和相等。
首先,我们必须找到给定集合的总和。如果是偶数,则有机会将其分为两组。否则,将无法分割。
对于总和的均值,我们将创建一个名为partTable的表,现在使用以下条件解决该问题。
当array [0]到array [j-1]的子集的和等于i时,partTable [i,j]为true,否则为false。
Input: A set of integers. {3, 1, 1, 2, 2, 1} Output: True if the set can be partitioned into two parts with equal sum. Here the answer is true. One pair of the partitions are: {3, 1, 1}, {2, 2, 1}
checkPartition(set, n)
输入-给定集合,集合中的元素数。
输出- 如果可以进行分区以使两个子集的总和相等,则为True。
Begin sum := sum of all elements in the set if sum is odd, then return define partTable of order (sum/2 + 1 x n+1) set all elements in the 0th row to true set all elements in the 0th column to false for i in range 1 to sum/2, do for j in range 1 to n, do partTab[i, j] := partTab[i, j-1] if i >= set[j-1], then partTab[i, j] := partTab[i, j] or with partTab[i – set[j-1], j-1] done done return partTab[sum/2, n] End
#include <iostream> using namespace std; bool checkPartition (int set[], int n) { int sum = 0; for (int i = 0; i < n; i++) //find the sum of all elements of set sum += set[i]; if (sum%2 != 0) //when sum is odd, it is not divisible into two set return false; bool partTab[sum/2+1][n+1]; //create partition table for (int i = 0; i <= n; i++) partTab[0][i] = true; //for set of zero element, all values are true for (int i = 1; i <= sum/2; i++) partTab[i][0] = false; //as first column holds empty set, it is false //以botton up方式填充分区表 for (int i = 1; i <= sum/2; i++) { for (int j = 1; j <= n; j++) { partTab[i][j] = partTab[i][j-1]; if (i >= set[j-1]) partTab[i][j] = partTab[i][j] || partTab[i - set[j-1]][j-1]; } } return partTab[sum/2][n]; } int main() { int set[] = {3, 1, 1, 2, 2, 1}; int n = 6; if (checkPartition(set, n)) cout << "给定集合可以分为相等总和的两个子集。"; else cout << "给定集合不能分为相等总和的两个子集。"; }
输出结果
给定集合可以分为相等总和的两个子集。