最大总和增加子序列是给定整数列表的子序列,该整数列表的总和为最大,并且在该子序列中,所有元素均按升序排序。
假设有一个数组来存储最大和增加子序列,使得L [i]是最大和增加子序列,并以array [i]结尾。
Input: Sequence of integers. {3, 2, 6, 4, 5, 1} Output: Increasing subsequence whose sum is maximum. {3, 4, 5}.
maxSumSubSeq(array, n)
输入:数字序列,元素数。
输出:递增子序列的最大和。
Begin define array of arrays named subSeqLen of size n. add arr[0] into the subSeqLen for i in range (1 to n-1), do for j in range (0 to i-1), do if arr[i] > arr[j] and sum of subSeqLen [i] < sum of subSeqLen [j], then subSeqLen[i] := subSeqLen[j] done done add arr[i] into subSeqLen[i] res := subSeqLen[0] for all values of subSeqLen, do if sum of subSeqLen[i] > sum of subSeqLen[res], then res := subSeqLen[i] done print the values of res. End
#include <iostream> #include <vector> using namespace std; int findAllSum(vector<int> arr) { //find sum of all vector elements int sum = 0; for(int i = 0; i<arr.size(); i++) { sum += arr[i]; } return sum; } void maxSumSubSeq(int arr[], int n) { vector <vector<int> > subSeqLen(n); //max sum increasing subsequence ending with arr[i] subSeqLen[0].push_back(arr[0]); for (int i = 1; i < n; i++) { //from index 1 to all for (int j = 0; j < i; j++) { //for all j, j<i if ((arr[i] > arr[j]) && (findAllSum(subSeqLen[i]) < findAllSum(subSeqLen[j]))) subSeqLen[i] = subSeqLen[j]; } subSeqLen[i].push_back(arr[i]); //sub Sequence ends with arr[i] } vector<int> res = subSeqLen[0]; for(int i = 0; i<subSeqLen.size(); i++) { if (findAllSum(subSeqLen[i]) > findAllSum(res)) res = subSeqLen[i]; } for(int i = 0; i<res.size(); i++) cout << res[i] << " "; cout << endl; } int main() { int arr[] = { 3, 2, 6, 4, 5, 1 }; int n = 6; cout << "The Maximum Sum Subsequence is: "; maxSumSubSeq(arr, n); }
输出结果
The Maximum Sum Subsequence is: 3 4 5