当所有数字(首位除外)均不小于其前一个数字时,该数字被称为不递减。对于此算法,我们必须找出N位数字中有多少个非递减数字。
让count(n,d)函数计算长度为n并以字母d结尾的不减数字的数量,然后我们可以这样写关系。
$$count(n,d)= \ displaystyle \ sum \ limits_ {i = 0} ^ d count(n-1,i)\\ total = \ displaystyle \ sum \ limits_ {d = 0} ^ {n-1 } count(n-1,d)$$
Input: Number of digits, say 3. Output: The possible non decreasing numbers. Here it is 220. Non decreasing numbers are like 111, 112, 123, 789, 569 etc.
countNumbers(n)
输入: 给定值。
输出: n位数字中非递减值的数量。
Begin define count matrix of order (10 x n+1), and fill with 0 for i := 0 to 9, do count[i, 1] := 1 done for digit := 0 to 9, do for len := 2 to n, do for x := 0 to digit, do count[digit, len] := count[digit, len] + count[x, len-1] done done done nonDecNum := 0 for i := 0 to 9, do nonDecNum := nonDecNum + count[i, n] done return nonDecNum End
#include<iostream> using namespace std; long long int countNumbers(int n) { long long int count[10][n+1]; //to store total non decreasing number starting with i digit and length j for(int i = 0; i<10; i++) for(int j = 0; j<n+1; j++) count[i][j] = 0; //initially set all elements to 0 for (int i = 0; i < 10; i++) //set non decreasing numbers of 1 digit count[i][1] = 1; for (int digit = 0; digit <= 9; digit++) { //for all digits 0-9 for (int len = 2; len <= n; len++) { //for those numbers (length 2 to n) for (int x = 0; x <= digit; x++) count[digit][len] += count[x][len-1]; //last digit x <= digit, add with number of len-1 } } long long int nonDecNum = 0; for (int i = 0; i < 10; i++) //total non decreasing numbers starting with 0-9 nonDecNum += count[i][n]; return nonDecNum; } int main() { int n = 3; cout << "Enter number of digits: "; cin >> n; cout << "Total non decreasing numbers: " << countNumbers(n); }
输出结果
Enter number of digits: 3 Total non decreasing numbers: 220