前缀表达式是人类可读和可解的。我们可以轻松地区分算子的顺序,也可以在计算数学表达式时先使用括号将其求解。计算机无法轻松地区分运算符和括号,这就是为什么需要后缀转换的原因。
要将中缀表达式转换为后缀表达式,我们将使用堆栈数据结构。通过从左到右扫描infix表达式,当我们得到任何操作数时,只需将它们添加到后缀形式中,并为运算符和括号将它们添加到堆栈中以保持它们的优先级。
注意:这里我们将仅考虑{+,-,*,/,^}运算符,而忽略其他运算符。
Input: The infix expression. x^y/(5*z)+2 Output: Postfix Form Is: xy^5z*/2+
infixToPostfix(infix)
输入-中缀表达式。
输出-将中缀表达式转换为后缀形式。
Begin initially push some special character say # into the stack for each character ch from infix expression, do if ch is alphanumeric character, then add ch to postfix expression else if ch = opening parenthesis (, then push ( into stack else if ch = ^, then //exponential operator of higher precedence push ^ into the stack else if ch = closing parenthesis ), then while stack is not empty and stack top ≠ (, do pop and add item from stack to postfix expression done pop ( also from the stack else while stack is not empty AND precedence of ch <= precedence of stack top element, do pop and add into postfix expression done push the newly coming character. done while the stack contains some remaining characters, do pop and add to the postfix expression done return postfix End
#include<iostream> #include<stack> #include<locale> //for function isalnum()using namespace std; int preced(char ch) { if(ch == '+' || ch == '-') { return 1; //Precedence of + or - is 1 }else if(ch == '*' || ch == '/') { return 2; //Precedence of * or / is 2 }else if(ch == '^') { return 3; //Precedence of ^ is 3 }else { return 0; } } string inToPost(string infix ) { stack<char> stk; stk.push('#'); //add some extra character to avoid underflow string postfix = ""; //initially the postfix string is empty string::iterator it; for(it = infix.begin(); it!=infix.end(); it++) { if(isalnum(char(*it))) postfix += *it; //add to postfix when character is letter or number else if(*it == '(') stk.push('('); else if(*it == '^') stk.push('^'); else if(*it == ')') { while(stk.top() != '#' && stk.top() != '(') { postfix += stk.top(); //store and pop until ( has found stk.pop(); } stk.pop(); //remove the '(' from stack }else { if(preced(*it) > preced(stk.top())) stk.push(*it); //push if precedence is high else { while(stk.top() != '#' && preced(*it) <= preced(stk.top())) { postfix += stk.top(); //store and pop until higher precedence is found stk.pop(); } stk.push(*it); } } } while(stk.top() != '#') { postfix += stk.top(); //store and pop until stack is not empty. stk.pop(); } return postfix; } int main() { string infix = "x^y/(5*z)+2"; cout << "Postfix Form Is: " << inToPost(infix) << endl; }
输出结果
Postfix Form Is: xy^5z*/2+