在这个问题中,给出了一个正整数列表。每个整数表示可以从当前元素进行多少个最大步长。从第一个元素开始,我们必须找到到达列表末尾的最小跳转数。
对于动态编程方法,定义了一个跳转数组来存储所需的最小跳转数。像jumps [i]的值一样,它指示从第0个索引到达数组的第i个索引需要多少个最小跳转。
Input: A list of integers. {1, 3, 5, 8, 9, 2, 6, 7, 6, 8, 9} Output: The minimum number of jumps to reach the end location. It is 3. Start from value 1, go to 3. then jumps 3 values and reach 8. then jump 8 values and reach the last element.
minPossibleJump(list, n)
输入: Number数组,数组中元素的数量。
输出:到达终点所需的最小跳数。
Begin define an array named jump of size n if n = 0 or list[0] = 0, then return ∞ jump[0] := 0 for i := 1 to n, do jumps[i] := ∞ for j := 0 to i, do if i <= j + list[j] and jump[j] ≠ ∞, then jump[i] := minimum of jump[i] and (jump[j] + 1) break the loop done done return jump[n-1] End
#include<iostream> using namespace std; int min(int x, int y) { return (x < y)? x: y; } int minPossibleJump(int list[], int n) { int *jumps = new int[n]; // dynamically create jumps array to store steps if (n == 0 || list[0] == 0) return INT_MAX; jumps[0] = 0; for (int i = 1; i < n; i++) { jumps[i] = INT_MAX; //initially set jumps as infinity for (int j = 0; j < i; j++) { if (i <= j + list[j] && jumps[j] != INT_MAX) { jumps[i] = min(jumps[i], jumps[j] + 1); break; } } } return jumps[n-1]; } int main() { int list[] = {1, 3, 5, 8, 9, 2, 6, 7, 6, 8, 9}; int size = 11; cout << "Minimum number of jumps to reach end is: "<< minPossibleJump(list,size); return 0; }
输出结果
Minimum number of jumps to reach end is: 3