查找平方根的巴比伦方法基于一种数值方法,该方法基于牛顿-拉夫森方法来求解非线性方程。
这个想法很简单,从x的任意值开始,并且y为1,我们可以通过找到x和y的平均值来简单地得到根的下一个近似值。然后,y值将更新为数字/ x。
Input: A number: 65 Output: The square root of 65 is: 8.06226
sqRoot(number)
输入:实数。
输出:给定数字的平方根。
Begin x := number y := 1 precision := 0.000001 while relative error of x and y > precision, do x := (x+y) / 2 y := number / x done return x End
#include<iostream> #include<cmath> using namespace std; float sqRoot(float number) { float x = number, y = 1; //initial guess as number and 1 float precision = 0.000001; //the result is correct upto 0.000001 while(abs(x - y)/abs(x) > precision) { x = (x + y)/2; y = number/x; } return x; } int main() { int n; cout << "Enter Number to find square root: "; cin >> n; cout << "The square root of " << n <<" is: " << sqRoot(n); }
输出结果
Enter Number to find square root: 65 The square root of 65 is: 8.06226