Jarvis March算法

Jarvis March算法用于从一组给定的数据点中检测凸包的角点。

从数据集的最左端开始,我们通过逆时针旋转将这些点保留在凸包中。从当前点开始,我们可以通过从当前点检查这些点的方向来选择下一个点。当角度最大时,将选择该点。完成所有点后,当下一个点是起点时,停止算法。

输入输出

Input:
Set of points: {(-7,8), (-4,6), (2,6), (6,4), (8,6), (7,-2), (4,-6), (8,-7),(0,0), (3,- 2),(6,-10),(0,6),(-9,-5),(-8,-2),(-8,0),(-10,3),(-2,2),(-10,4)}
Output:
Boundary points of convex hull are:
(-9, -5) (6, -10) (8, -7) (8, 6) (-7, 8) (-10, 4) (-10, 3)

算法

findConvexHull(points, n)

输入:点数,点数。

输出:凸包的角点。

Begin
   start := points[0]
   for each point i, do
      if points[i].x < start.x, then          // get the left most point
         start := points[i]
   done

   current := start
   add start point to the result set.
   define colPts set to store collinear points

   while true, do                //start an infinite loop
      next := points[i]
      for all points i except 0th point, do
         if points[i] = current, then
            skip the next part, go for next iteration
         val := cross product of current, next, points[i]

         if val > 0, then
            next := points[i]
            clear the colPts array
         else if cal = 0, then
            if next is closer to current than points[i], then
               add next in the colPts
               next := points[i]
            else
               add points[i] in the colPts
      done

      add all items in the colPts into the result
      if next = start, then
         break the loop
      insert next into the result
      current := next
   done
   return result
End

示例

#include<iostream>
#include<set>
#include<vector>
using namespace std;

struct point {              //define points for 2d plane
   int x, y;

   bool operator==(point p2) {
      if(x == p2.x && y == p2.y)
         return 1;
      return 0;
   }

   bool operator<(const point &p2)const {       //dummy compare function used to sort in set
      return true;
   }
};

int crossProduct(point a, point b, point c) {            //finds the place of c from ab vector
   int y1 = a.y - b.y;
   int y2 = a.y - c.y;
   int x1 = a.x - b.x;
   int x2 = a.x - c.x;
   return y2*x1 - y1*x2;          //if result < 0, c in the left, > 0, c in the right, = 0, a,b,c are collinear
}

int distance(point a, point b, point c) {
   int y1 = a.y - b.y;
   int y2 = a.y - c.y;
   int x1 = a.x - b.x;
   int x2 = a.x - c.x;

   int item1 = (y1*y1 + x1*x1);
   int item2 = (y2*y2 + x2*x2);

   if(item1 == item2)
      return 0;             //when b and c are in same distance from a
   else if(item1 < item2)
      return -1;          //when b is closer to a
   return 1;              //when c is closer to a
}

set<point>findConvexHull(point points[], int n) {
   point start = points[0];
   for(int i = 1; i<n; i++) {              //find the left most point for starting
      if(points[i].x < start.x)
         start = points[i];
   }

   point current = start;
   set<point> result;                 //set is used to avoid entry of duplicate points
   result.insert(start);
   vector<point> *collinearPoints = new vector<point>;

   while(true) {
      point nextTarget = points[0];

      for(int i = 1; i<n; i++) {
         if(points[i] == current)       //when selected point is current point, ignore rest part
            continue;
         int val = crossProduct(current, nextTarget,points[i]);

         if(val > 0) {            //when ith point is on the left side
            nextTarget = points[i];
            collinearPoints = new vector<point>;      //reset collinear points

         }else if(val == 0) {          //if three points are collinear
            if(distance(current, nextTarget, points[i]) < 0) { //add closer one to collinear list
               collinearPoints->push_back(nextTarget);
                  nextTarget = points[i];
            }else{
               collinearPoints->push_back(points[i]); //when ith point is closer or same as nextTarget
            }
         }
      }
      vector<point>::iterator it;

      for(it = collinearPoints->begin(); it != collinearPoints->end(); it++) {

         result.insert(*it);     //add allpoints in collinear points to result set
      }

      if(nextTarget == start)        //when next point is start it means, the area covered
         break;
      result.insert(nextTarget);
      current = nextTarget;
   }
   return result;
}

int main() {
   point points[] = {{-7,8},{-4,6},{2,6},{6,4},{8,6},{7,-2},{4,-6},{8,-7},{0,0},
      {3,-2},{6,-10},{0,-6},{-9,-5},{-8,-2},{-8,0},{-10,3},{-2,2},{-10,4}};
   int n = 18;
   set<point> result;
   result = findConvexHull(points, n);
   cout << "Boundary points of convex hull are: "<<endl;
   set<point>::iterator it;

   for(it = result.begin(); it!=result.end(); it++)
      cout << "(" << it->x << ", " <<it->y <<") ";
}

输出结果

Boundary points of convex hull are:
(-9, -5) (6, -10) (8, -7) (8, 6) (-7, 8) (-10, 4) (-10, 3)