如何从R中的相关测试中提取相关系数值?

要在R中执行相关性测试,我们需要使用带有两个变量的cor.test函数,并且该函数会返回许多值,例如测试统计值,自由度,p值,置信区间和相关系数值。如果要从相关测试输出中提取相关系数值,则可以使用估计函数,如以下示例所示。

示例

x1<-rnorm(20,5,2)
y1<-rnorm(20,5,1)
cor.test(x1,y1)

输出结果

Pearson's product-moment correlation
data: x1 and y1
t = -0.13423, df = 18, p-value = 0.8947
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
-0.4675990 0.4167308
sample estimates:
cor
-0.03162132

cor.test(x1,y1)$估计cor -0.08194057

示例

x2<-runif(5000,2,5)
y2<-runif(5000,2,10)
cor.test(x2,y2)

输出结果

Pearson's product-moment correlation
data: x2 and y2
t = -1.4823, df = 4998, p-value = 0.1383
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
-0.048653479 0.006760764
sample estimates:
cor
-0.02096246

cor.test(x2,y2)$估计cor 0.01301688

示例

x3<-runif(50,2,5)
y3<-runif(50,2,10)
cor.test(x3,y3)

输出结果

Pearson's product-moment correlation
data: x3 and y3
t = -0.80709, df = 48, p-value = 0.4236
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
-0.3817626 0.1680496
sample estimates:
cor
-0.1157106

cor.test(x3,y3)$估计cor 0.1031475

示例

x4<-rexp(500,2.1)
y4<-rexp(500,5.75)
cor.test(y4,y4)

输出结果

Pearson's product-moment correlation
data: y4 and y4
t = Inf, df = 498, p-value < 2.2e-16
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
1 1
sample estimates:
cor
1

cor.test(y4,y4)$估计cor 1

示例

x5<-rpois(100000,2)
y5<-rpois(100000,5)
cor.test(y5,y5)

输出结果

Pearson's product-moment correlation
data: y5 and y5
t = 1.5006e+10, df = 99998, p-value < 2.2e-16
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
1 1
sample estimates:
cor
1

cor.test(y5,y5)$估计cor 1

猜你喜欢