R中没有函数来计算总体方差,但是我们可以使用总体大小和样本方差来找到它。我们知道人口方差的除数是人口规模,如果我们将var(计算样本方差)函数的输出乘以(人口规模– 1)/人口规模,则输出将是人口差异。
set.seed(141) x1<-1:100 Sample_Variance<-var(x1) Sample_Variance
输出结果
[1] 841.6667
Population_Variance<-var(x1)*(99/100) Population_Variance
输出结果
[1] 833.25
x2<-rnorm(500) Sample_Variance<-var(x2) Sample_Variance
输出结果
[1] 1.013514
Population_Variance<-var(x2)*(499/500) Population_Variance
输出结果
[1] 1.011487
x3<-round(rnorm(500),0) Sample_Variance<-var(x3) Sample_Variance
输出结果
[1] 1.088401
Population_Variance<-var(x3)*(499/500) Population_Variance
输出结果
[1] 1.086224
x4<-rpois(150,10) x4
输出结果
[1] 15 13 11 4 10 9 13 12 8 12 7 13 10 18 8 11 15 8 9 14 7 14 8 11 7 [26] 6 10 12 7 15 13 12 13 11 9 7 15 11 17 10 17 11 9 10 17 11 4 11 11 9 [51] 11 10 11 10 16 11 6 4 9 5 5 6 6 6 10 10 10 13 10 6 10 9 7 11 13 [76] 12 7 5 10 7 7 10 7 10 10 14 11 11 9 6 13 9 5 11 13 11 10 10 6 15 [101] 7 12 7 9 13 6 9 13 13 11 11 16 5 12 14 10 10 10 13 7 4 16 6 13 6 [126] 4 9 7 9 7 8 12 12 10 10 9 8 4 10 8 9 7 13 7 11 9 8 8 10 12
Sample_Variance<-var(x4) Sample_Variance
输出结果
[1] 10.86694
Population_Variance<-var(x4)*(149/150) Population_Variance
输出结果
[1] 10.79449
x5<-sample(1:100,120,replace=TRUE) x5
输出结果
[1] 62 59 25 15 16 17 69 22 81 90 91 68 61 40 61 48 33 71 60 11 1 15 95 17 81 [26] 29 16 44 47 26 20 56 97 74 3 5 44 77 50 44 83 54 37 54 73 46 99 19 85 28 [51] 8 49 15 80 65 50 85 7 91 76 83 93 54 95 52 8 20 18 70 12 66 36 2 99 81 [76] 13 91 11 73 19 2 73 20 12 80 41 38 20 61 64 39 30 65 28 25 38 56 61 44 32 [101] 66 76 2 72 36 78 48 41 52 17 31 69 33 74 39 60 29 59 72 11
Sample_Variance<-var(x5) Sample_Variance
输出结果
[1] 892.7361
Population_Variance<-var(x5)*(119/120) Population_Variance
输出结果
[1] 885.2966
x6<--sample(101:999,120) x6
输出结果
[1] -919 -502 -343 -523 -867 -405 -368 -447 -286 -578 -147 -665 -823 -598 -260 [16] -740 -569 -661 -386 -267 -185 -114 -608 -711 -638 -992 -552 -795 -291 -152 [31] -154 -211 -721 -388 -283 -234 -525 -942 -599 -176 -239 -788 -579 -875 -883 [46] -856 -143 -304 -407 -448 -717 -524 -273 -235 -167 -158 -659 -432 -803 -624 [61] -187 -312 -225 -802 -439 -453 -637 -571 -768 -664 -473 -331 -806 -265 -173 [76] -748 -623 -671 -989 -888 -950 -589 -487 -526 -668 -760 -414 -622 -248 -276 [91] -139 -951 -630 -885 -440 -191 -491 -685 -653 -132 -742 -477 -181 -505 -759 [106] -974 -741 -548 -593 -240 -527 -914 -402 -127 -860 -336 -333 -794 -891 -311
Sample_Variance<-var(x6) Sample_Variance
输出结果
[1] 62657.78
Population_Variance<-var(x6)*(119/120) Population_Variance
输出结果
[1] 62135.63
x7<-rexp(50,3.5) x7
输出结果
[1] 0.205216964 0.133222130 0.488146733 0.244428905 0.833206350 0.069545948 [7] 0.195504191 0.539364253 1.099099582 1.835459402 0.170821138 0.342813864 [13] 0.108211014 0.392889843 0.069053900 0.083381383 0.282172880 1.299693448 [19] 0.033847926 0.248126373 0.537849065 0.508127648 0.148564885 0.047607303 [25] 0.247224701 0.171349073 0.089745700 0.157843010 0.870047906 0.790377494 [31] 0.285218089 0.107768506 0.806453962 0.565196530 0.283891426 0.129423319 [37] 0.116770751 0.238833628 0.379741206 0.009492331 0.343673059 0.072587659 [43] 0.076498866 0.504828741 0.313257385 0.427818704 0.372741859 0.210799536 [49] 0.155322546 0.504289020
Sample_Variance<-var(x7) Sample_Variance
输出结果
[1] 0.03401862
Population_Variance<-var(x7)*(49/50) Population_Variance
输出结果
[1] 0.03333825