对于给定的二叉搜索树(BST),我们的任务是确定其中值。
甚至没有。节点数,中位数=((n / 2个节点+(n + 1)/ 2个节点)/ 2)对于奇数个节点,中位数=(n + 1)/ 2个节点。
对于给定的BST(节点数为奇数)为-
7 / \ 4 9 / \ / \ 2 5 8 10
给定BST的顺序为:2、4、5、7、8、9、10因此,这里的中位数为7。
对于给定的BST(甚至偶数个节点)是-
7 / \ 4 9 / \ / 2 5 8
给定的BST的顺序为-2,4,5,5,7,8,9
因此,此处的中位数为(5 + 7)/ 2 = 6。
为了确定中位数,我们需要确定BST的顺序,因为BST的顺序将按照排序顺序,然后确定中位数。在这里,该概念基于使用O(1)额外空间的BST中第K个最小元素。现在,如果允许我们实现额外的空间,则任务非常简单,但是实现递归和堆栈的顺序遍历都使用此处不允许的空间。
结果,解决方案是执行Morris有序遍历,因为它不需要任何额外的空间。
莫里斯有序遍历的解释如下-
我们将电流初始化为根
虽然当前不为NULL
如果当前还没有孩子
打印当前数据
向右移动,即current = current-> right
其他
将current构造为current的左子树中最右边节点的right子代
移至该左孩子,即current = current-> left
最终实现以以下方式讨论-
我们算数。给定BST中实现Morris有序遍历的节点的数量。
之后,通过对节点进行计数并验证计数是否等于中点,再执行一次莫里斯有序遍历。
对于考虑甚至没有。对于节点,实现了指向先前节点的额外指针。
/* C++ program to find the median of BST in O(n) time and O(1) space*/ #include<bits/stdc++.h> using namespace std; /* Implements a binary search tree Node1 which has data, pointer to left child and a pointer to right child */ struct Node1{ int data1; struct Node1* left1, *right1; }; //Shows a utility function to create a new BST node struct Node1 *newNode(int item1){ struct Node1 *temp1 = new Node1; temp1->data1 = item1; temp1->left1 = temp1->right1 = NULL; return temp1; } /* Shows a utility function to insert a new node with given key in BST */ struct Node1* insert(struct Node1* node1, int key1){ /* It has been seen that if the tree is empty, return a new node */ if (node1 == NULL) return newNode(key1); /* Else, recur down the tree */ if (key1 < node1->data1) node1->left1 = insert(node1->left1, key1); else if (key1 > node1->data1) node1->right1 = insert(node1->right1, key1); /* return the (unchanged) node pointer */ return node1; } /* Shows function to count nodes in a binary search tree using Morris Inorder traversal*/ int counNodes(struct Node1 *root1){ struct Node1 *current1, *pre1; // Used to initialise count of nodes as 0 int count1 = 0; if (root1 == NULL) return count1; current1 = root1; while (current1 != NULL){ if (current1->left1 == NULL){ // Now count node if its left is NULL count1++; // Go to its right current1 = current1->right1; } else { /* Determine the inorder predecessor of current */ pre1 = current1->left1; while (pre1->right1 != NULL && pre1->right1 != current1) pre1 = pre1->right1; /* Construct current1 as right child of its inorder predecessor */ if(pre1->right1 == NULL){ pre1->right1 = current1; current1 = current1->left1; } /* we have to revert the changes made in if part to restore the original tree i.e., fix the right child of predecssor */ else { pre1->right1 = NULL; // Now increment count if the current // node is to be visited count1++; current1 = current1->right1; } /* End of if condition pre1->right1 == NULL */ } /* End of if condition current1->left1 == NULL*/ } /* End of while */ return count1; } /* Shows function to find median in O(n) time and O(1) space using Morris Inorder traversal*/ int findMedian(struct Node1 *root1){ if (root1 == NULL) return 0; int count1 = counNodes(root1); int currCount1 = 0; struct Node1 *current1 = root1, *pre1, *prev1; while (current1 != NULL){ if (current1->left1 == NULL){ // Now count current node currCount1++; // Verify if current node is the median // Odd case if (count1 % 2 != 0 && currCount1 == (count1+1)/2) return prev1->data1; // Even case else if (count1 % 2 == 0 && currCount1 == (count1/2)+1) return (prev1->data1 + current1->data1)/2; // Now update prev1 for even no. of nodes prev1 = current1; //Go to the right current1 = current1->right1; } else { /* determine the inorder predecessor of current1 */ pre1 = current1->left1; while (pre1->right1 != NULL && pre1->right1 != current1) pre1 = pre1->right1; /* Construct current1 as right child of its inorder predecessor */ if (pre1->right1 == NULL){ pre1->right1 = current1; current1 = current1->left1; } /* We have to revert the changes made in if part to restore the original tree i.e., fix the right child of predecssor */ else { pre1->right1 = NULL; prev1 = pre1; // Now count current node currCount1++; // Verify if the current node is the median if (count1 % 2 != 0 && currCount1 == (count1+1)/2 ) return current1->data1; else if (count1%2==0 && currCount1 == (count1/2)+1) return (prev1->data1+current1->data1)/2; // Now update prev1 node for the case of even // no. of nodes prev1 = current1; current1 = current1->right1; } /* End of if condition pre1->right1 == NULL */ } /* End of if condition current1->left1 == NULL*/ } /* End of while */ } /* Driver program to test above functions*/ int main(){ /* Let us create following BST 7 / \ 4 9 / \ / \ 2 5 8 10 */ struct Node1 *root1 = NULL; root1 = insert(root1, 7); insert(root1, 4); insert(root1, 2); insert(root1, 5); insert(root1, 9); insert(root1, 8); insert(root1, 10); cout << "\nMedian of BST is(for odd no. of nodes) "<< findMedian(root1) <<endl; /* Let us create following BST 7 / \ 4 9 / \ / 2 5 8 */ struct Node1 *root2 = NULL; root2 = insert(root2, 7); insert(root2, 4); insert(root2, 2); insert(root2, 5); insert(root2, 9); insert(root2, 8); cout << "\nMedian of BST is(for even no. of nodes) " << findMedian(root2); return 0; }
输出结果
Median of BST is(for odd no. of nodes) 7 Median of BST is(for even no. of nodes) 6