假设我们有一个N x M的二进制矩阵。其中0表示空白单元格,而1表示被阻止的单元格。现在从左上角开始,我们必须找到到达右下角的多种方法。如果答案很大,则将其修改为10 ^ 9 + 7。
所以,如果输入像
0 | 0 | 1 |
0 | 0 | 0 |
1 | 1 | 0 |
那么输出将为2,因为有两种方法可以到达右下角:[右,下,右,下]和[下,右,右,下]。
让我们看下面的实现以更好地理解-
class Solution: def solve(self, matrix): dp = [[0] * len(matrix[0]) for _ in range(len(matrix))] dp[0][0] = 1 for i in range(1, len(matrix)): if matrix[i][0] == 1: break else: dp[i][0] = 1 for j in range(1, len(matrix[0])): if matrix[0][j] == 1: break else: dp[0][j] = 1 for i in range(1, len(matrix)): for j in range(1, len(matrix[0])): if matrix[i][j] == 1: dp[i][j] = 0 else: dp[i][j] = dp[i - 1][j] + dp[i][j - 1] return dp[-1][-1] ob = Solution() matrix = [ [0, 0, 1], [0, 0, 0], [1, 1, 0] ] print(ob.solve(matrix))
matrix = [ [0, 0, 1], [0, 0, 0], [1, 1, 0] ]输出结果
2