在这个问题中,我们给了Q个查询,每个查询都有一个N。我们的任务是创建一个程序来解决查询,以查找一个数字在C ++中是否具有完全不同的四个因素。
为了解决每个查询,我们需要确定数字N是否正好具有四个不同的因子。如果打印的是,则为否。
让我们举个例子来了解这个问题,
输入:Q = 3,4,6,15
输出:否是是
对于查询1:4的因数是1、2、4
对于查询2:6的因数是1、2、3、6
对于查询3:15的因数是1、3、5、15
解决这个问题的简单方法是找到所有数字的因素。这是通过找到从1到√N的所有数字,并将计数器增加2来完成的。然后检查计数器是否等于4并根据其相等性打印YES或NO。
#include <iostream> #include <math.h> using namespace std; int solveQuery(int N){ int factors = 0; for(int i = 1; i < sqrt(N); i++){ if(N % i == 0){ factors += 2; } } if(factors == 4){ return 1; } return 0; } int main() { int Q = 3; int query[3] = {4, 6, 15}; for(int i = 0; i < Q; i++){ if(solveQuery(query[i])) cout<<"The number "<<query[i]<<" has exactly four distinct factors\n"; else cout<<"The number "<<query[i]<<" does not have exactly four distinct factors\n"; } }
输出结果
The number 4 does not have exactly four distinct factors The number 6 has exactly four distinct factors The number 15 has exactly four distinct factors
一种有效的方法是将数论的概念用于四因子数。因此,如果一个数具有四个因素,
如果数字是质数的立方。然后它将具有四个不同的因素。例如,如果N =(p ^ 3),则因子将为1,p,(p ^ 2),N。
如果该数字是两个不同质数的乘积。然后,它将具有四个不同的因素。例如,如果N = p1 * p2,则因子将为1,p1,p2,N。
#include <bits/stdc++.h> using namespace std; int N = 1000; bool hasFourFactors[1000]; void fourDistinctFactors() { bool primeNo[N + 1]; memset(primeNo, true, sizeof(primeNo)); for (int i = 2; i <= sqrt(N); i++) { if (primeNo[i] == true) { for (int j = i * 2; j <= N; j += i) primeNo[j] = false; } } vector<int> primes; for (int i = 2; i <= N; i++) if (primeNo[i]) primes.push_back(i); memset(hasFourFactors, false, sizeof(hasFourFactors)); for (int i = 0; i < primes.size(); ++i) { int p1 = primes[i]; if (1 *(pow(p1, 3)) <= N) hasFourFactors[p1*p1*p1] = true; for (int j = i + 1; j < primes.size(); ++j) { int p2 = primes[j]; if (1 * p1*p2 > N) break; hasFourFactors[p1*p2] = true; } } } int main() { int Q = 3; int query[] = {3, 6, 15}; fourDistinctFactors(); for(int i = 0; i < Q; i++){ if(hasFourFactors[query[i]]) cout<<"The number "<<query[i]<<" has exactly four distinct factors\n"; else cout<<"The number "<<query[i]<<" does not have exactly four distinct factors\n"; } return 0; }
输出结果
The number 3 does not have exactly four distinct factors The number 6 has exactly four distinct factors The number 15 has exactly four distinct factors