二叉搜索树是一种排序二叉树,其中所有节点都具有以下两个属性 -
节点的右子树的键大于其父节点的键。
节点的左子树的键小于或等于其父节点的键。
每个节点不应有超过两个子节点。
树旋转是一种改变结构而不干扰二叉树上元素顺序的操作。它在树中向上移动一个节点,向下移动一个节点。它用于改变树的形状,并通过向下移动较小的子树和向上移动较大的子树来降低其高度,从而提高许多树操作的性能。旋转的方向取决于树节点移动的一侧,而其他人则说这取决于哪个孩子占据了根的位置。这是一个在二叉搜索树上执行左旋转的 C++ 程序。
Begin Create a structure avl to declare variables data d, a left pointer l and a right pointer r. Declare a class avl_tree to declare following functions: height() - To calculate height of the tree by max function. Difference() - To calculate height difference of the tree. rr_rotat() - For right-right rotation of the tree. ll_rotat() - For left-left rotation of the tree. lr_rotat() - For left-right rotation of the tree. rl_rotat() - For right-left rotation of the tree. balance() - Balance the tree by getting balance factor. Put the difference in bal_factor. If bal_factor>1 balance the left subtree. If bal_factor<-1 balance the right subtree. insert() - To insert the elements in the tree. show() - To print the tree. inorder() - To print inorder traversal of the tree. preorder() - To print preorder traversal of the tree. postorder() - To print postorder traversal of the tree. In main(), perform switch operation and call the functions as per choice. End.
#include<iostream> #include<cstdio> #include<sstream> #include<algorithm> #define pow2(n) (1 << (n)) using namespace std; struct avl { int d; struct avl *l; struct avl *r; }*r; class avl_tree { public: int height(avl *); int difference(avl *); avl *rr_rotat(avl *); avl *ll_rotat(avl *); avl *lr_rotat(avl*); avl *rl_rotat(avl *); avl * balance(avl *); avl * insert(avl*, int); void show(avl*, int); void inorder(avl *); void preorder(avl *); void postorder(avl*); avl_tree() { r = NULL; } }; int avl_tree::height(avl *t) { int h = 0; if (t != NULL) { int l_height = height(t->l); int r_height = height(t->r); int max_height = max(l_height, r_height); h = max_height + 1; } return h; } int avl_tree::difference(avl *t) { int l_height = height(t->l); int r_height = height(t->r); int b_factor = l_height - r_height; return b_factor; } avl *avl_tree::rr_rotat(avl *parent) { avl *t; t = parent->r; parent->r = t->l; t->l = parent; cout<<"Right-Right Rotation"; return t; } avl *avl_tree::ll_rotat(avl *parent) { avl *t; t = parent->l; parent->l = t->r; t->r = parent; cout<<"Left-Left Rotation"; return t; } avl *avl_tree::lr_rotat(avl *parent) { avl *t; t = parent->l; parent->l = rr_rotat(t); cout<<"Left-Right Rotation"; return ll_rotat(parent); } avl *avl_tree::rl_rotat(avl *parent) { avl *t; t= parent->r; parent->r = ll_rotat(t); cout<<"Right-Left Rotation"; return rr_rotat(parent); } avl *avl_tree::balance(avl *t) { int bal_factor = difference(t); if (bal_factor > 1) { if (difference(t->l) > 0) t = ll_rotat(t); else t = lr_rotat(t); } else if (bal_factor < -1) { if (difference(t->r) > 0) t= rl_rotat(t); else t = rr_rotat(t); } return t; } avl *avl_tree::insert(avl *r, int v) { if (r == NULL) { r= new avl; r->d = v; r->l = NULL; r->r= NULL; return r; } else if (v< r->d) { r->l= insert(r->l, v); r = balance(r); } else if (v >= r->d) { r->r= insert(r->r, v); r = balance(r); } return r; } void avl_tree::show(avl *p, int l) { int i; if (p != NULL) { show(p->r, l+ 1); cout<<" "; if (p == r) cout << "Root -> "; for (i = 0; i < l&& p != r; i++) cout << " "; cout << p->d; show(p->l, l + 1); } } void avl_tree::inorder(avl *t) { if (t == NULL) return; inorder(t->l); cout << t->d << " "; inorder(t->r); } void avl_tree::preorder(avl *t) { if (t == NULL) return; cout << t->d << " "; preorder(t->l); preorder(t->r); } void avl_tree::postorder(avl *t) { if (t == NULL) return; postorder(t ->l); postorder(t ->r); cout << t->d << " "; } int main() { int c, i; avl_tree avl; while (1) { cout << "1.Insert Element into the tree" << endl; cout << "2.show Balanced AVL Tree" << endl; cout << "3.InOrder traversal" << endl; cout << "4.PreOrder traversal" << endl; cout << "5.PostOrder traversal" << endl; cout << "6.Exit" << endl; cout << "输入您的选择: "; cin >> c; switch (c) { case 1: cout << "输入要插入的值: "; cin >> i; r= avl.insert(r, i); break; case 2: if (r == NULL) { cout << "Tree is Empty" << endl; continue; } cout << "平衡 AVL 树:" << endl; avl.show(r, 1); cout<<endl; break; case 3: cout << "中序遍历:" << endl; avl.inorder(r); cout << endl; break; case 4: cout << "预序遍历:" << endl; avl.preorder(r); cout << endl; break; case 5: cout << "后序遍历:" << endl; avl.postorder(r); cout << endl; break; case 6: exit(1); break; default: cout << "Wrong Choice" << endl; } } return 0; }输出结果
1.Insert Element into the tree 2.show Balanced AVL Tree 3.InOrder traversal 4.PreOrder traversal 5.PostOrder traversal 6.Exit 输入您的选择: 1 输入要插入的值: 13 1.Insert Element into the tree 2.show Balanced AVL Tree 3.InOrder traversal 4.PreOrder traversal 5.PostOrder traversal 6.Exit 输入您的选择: 1 输入要插入的值: 10 1.Insert Element into the tree 2.show Balanced AVL Tree 3.InOrder traversal 4.PreOrder traversal 5.PostOrder traversal 6.Exit 输入您的选择: 1 输入要插入的值: 15 1.Insert Element into the tree 2.show Balanced AVL Tree 3.InOrder traversal 4.PreOrder traversal 5.PostOrder traversal 6.Exit 输入您的选择: 1 输入要插入的值: 5 1.Insert Element into the tree 2.show Balanced AVL Tree 3.InOrder traversal 4.PreOrder traversal 5.PostOrder traversal 6.Exit 输入您的选择: 1 输入要插入的值: 11 1.Insert Element into the tree 2.show Balanced AVL Tree 3.InOrder traversal 4.PreOrder traversal 5.PostOrder traversal 6.Exit 输入您的选择: 1 输入要插入的值: 4 Left-Left Rotation1.Insert Element into the tree 2.show Balanced AVL Tree 3.InOrder traversal 4.PreOrder traversal 5.PostOrder traversal 6.Exit 输入您的选择: 1 输入要插入的值: 8 1.Insert Element into the tree 2.show Balanced AVL Tree 3.InOrder traversal 4.PreOrder traversal 5.PostOrder traversal 6.Exit 输入您的选择: 1 输入要插入的值: 16 1.Insert Element into the tree 2.show Balanced AVL Tree 3.InOrder traversal 4.PreOrder traversal 5.PostOrder traversal 6.Exit 输入您的选择: 3 中序遍历: 4 5 8 10 11 13 15 16 1.Insert Element into the tree 2.show Balanced AVL Tree 3.InOrder traversal 4.PreOrder traversal 5.PostOrder traversal 6.Exit 输入您的选择: 4 预序遍历: 10 5 4 8 13 11 15 16 1.Insert Element into the tree 2.show Balanced AVL Tree 3.InOrder traversal 4.PreOrder traversal 5.PostOrder traversal 6.Exit 输入您的选择: 5 后序遍历: 4 8 5 11 16 15 13 10 1.Insert Element into the tree 2.show Balanced AVL Tree 3.InOrder traversal 4.PreOrder traversal 5.PostOrder traversal 6.Exit 输入您的选择: 1 输入要插入的值: 14 1.Insert Element into the tree 2.show Balanced AVL Tree 3.InOrder traversal 4.PreOrder traversal 5.PostOrder traversal 6.Exit 输入您的选择: 1 输入要插入的值: 3 1.Insert Element into the tree 2.show Balanced AVL Tree 3.InOrder traversal 4.PreOrder traversal 5.PostOrder traversal 6.Exit 输入您的选择: 1 输入要插入的值: 7 1.Insert Element into the tree 2.show Balanced AVL Tree 3.InOrder traversal 4.PreOrder traversal 5.PostOrder traversal 6.Exit 输入您的选择: 1 输入要插入的值: 9 1.Insert Element into the tree 2.show Balanced AVL Tree 3.InOrder traversal 4.PreOrder traversal 5.PostOrder traversal 6.Exit 输入您的选择: 1 输入要插入的值: 52 Right-Right Rotation 1.Insert Element into the tree 2.show Balanced AVL Tree 3.InOrder traversal 4.PreOrder traversal 5.PostOrder traversal 6.Exit 输入您的选择: 6