queue和pipe的区别: pipe用来在两个进程间通信。queue用来在多个进程间实现通信。 此两种方法为所有系统多进程通信的基本方法,几乎所有的语言都支持此两种方法。
1)Queue & JoinableQueue
queue用来在进程间传递消息,任何可以pickle-able的对象都可以在加入到queue。
multiprocessing.JoinableQueue 是 Queue的子类,增加了task_done()和join()方法。
task_done()用来告诉queue一个task完成。一般地在调用get()获得一个task,在task结束后调用task_done()来通知Queue当前task完成。
join() 阻塞直到queue中的所有的task都被处理(即task_done方法被调用)。
代码:
import multiprocessing import timeclass Consumer(multiprocessing.Process): def __init__(self, task_queue, result_queue): multiprocessing.Process.__init__(self) self.task_queue = task_queue self.result_queue = result_queue
def run(self): proc_name = self.name while True: next_task = self.task_queue.get() if next_task is None: # Poison pill means shutdown print ('%s: Exiting' % proc_name) self.task_queue.task_done() break print ('%s: %s' % (proc_name, next_task)) answer = next_task() # __call__() self.task_queue.task_done() self.result_queue.put(answer) return
class Task(object): def __init__(self, a, b): self.a = a self.b = b def __call__(self): time.sleep(0.1) # pretend to take some time to do the work return '%s * %s = %s' % (self.a, self.b, self.a * self.b) def __str__(self): return '%s * %s' % (self.a, self.b)
if __name__ == '__main__': # Establish communication queues tasks = multiprocessing.JoinableQueue() results = multiprocessing.Queue() # Start consumers num_consumers = multiprocessing.cpu_count() print ('Creating %d consumers' % num_consumers) consumers = [ Consumer(tasks, results) for i in range(num_consumers) ] for w in consumers: w.start() # Enqueue jobs num_jobs = 10 for i in range(num_jobs): tasks.put(Task(i, i)) # Add a poison pill for each consumer for i in range(num_consumers): tasks.put(None)
# Wait for all of the tasks to finish tasks.join() # Start printing results while num_jobs: result = results.get() print ('Result:', result) num_jobs -= 1
注意小技巧: 使用None来表示task处理完毕。
运行结果:
2)pipe
pipe()返回一对连接对象,代表了pipe的两端。每个对象都有send()和recv()方法。
代码:
from multiprocessing import Process, Pipedef f(conn): conn.send([42, None, 'hello']) conn.close()
if __name__ == '__main__': parent_conn, child_conn = Pipe() p = Process(target=f, args=(child_conn,)) p.start() p.join() print(parent_conn.recv()) # prints "[42, None, 'hello']"
3)Value + Array
Value + Array 是python中共享内存 映射文件的方法,速度比较快。
from multiprocessing import Process, Value, Arraydef f(n, a): n.value = n.value + 1 for i in range(len(a)): a[i] = a[i] * 10
if __name__ == '__main__': num = Value('i', 1) arr = Array('i', range(10))
p = Process(target=f, args=(num, arr)) p.start() p.join()
print(num.value) print(arr[:]) p2 = Process(target=f, args=(num, arr)) p2.start() p2.join()
print(num.value) print(arr[:])
# the output is : # 2 # [0, 10, 20, 30, 40, 50, 60, 70, 80, 90] # 3 # [0, 100, 200, 300, 400, 500, 600, 700, 800, 900]