Python list内置sort()方法用来排序,也可以用python内置的全局sorted()方法来对可迭代的序列排序生成新的序列。
1)排序基础
简单的升序排序是非常容易的。只需要调用sorted()方法。它返回一个新的list,新的list的元素基于小于运算符(__lt__)来排序。
>>> sorted([5, 2, 3, 1, 4]) [1, 2, 3, 4, 5]
>>> a = [5, 2, 3, 1, 4] >>> a.sort() >>> a [1, 2, 3, 4, 5]
>>> sorted({1: 'D', 2: 'B', 3: 'B', 4: 'E', 5: 'A'}) [1, 2, 3, 4, 5]
2)key参数/函数
从python2.4开始,list.sort()和sorted()函数增加了key参数来指定一个函数,此函数将在每个元素比较前被调用。 例如通过key指定的函数来忽略字符串的大小写:
>>> sorted("This is a test string from Andrew".split(), key=str.lower) ['a', 'Andrew', 'from', 'is', 'string', 'test', 'This']
更广泛的使用情况是用复杂对象的某些值来对复杂对象的序列排序,例如:
>>> student_tuples = [ ('john', 'A', 15), ('jane', 'B', 12), ('dave', 'B', 10), ] >>> sorted(student_tuples, key=lambda student: student[2]) # sort by age [('dave', 'B', 10), ('jane', 'B', 12), ('john', 'A', 15)]
同样的技术对拥有命名属性的复杂对象也适用,例如:
>>> class Student: def __init__(self, name, grade, age): self.name = name self.grade = grade self.age = age def __repr__(self): return repr((self.name, self.grade, self.age)) >>> student_objects = [ Student('john', 'A', 15), Student('jane', 'B', 12), Student('dave', 'B', 10), ] >>> sorted(student_objects, key=lambda student: student.age) # sort by age [('dave', 'B', 10), ('jane', 'B', 12), ('john', 'A', 15)]
3)Operator 模块函数
上面的key参数的使用非常广泛,因此python提供了一些方便的函数来使得访问方法更加容易和快速。operator模块有itemgetter,attrgetter,从2.6开始还增加了methodcaller方法。使用这些方法,上面的操作将变得更加简洁和快速:
>>> from operator import itemgetter, attrgetter >>> sorted(student_tuples, key=itemgetter(2)) [('dave', 'B', 10), ('jane', 'B', 12), ('john', 'A', 15)] >>> sorted(student_objects, key=attrgetter('age')) [('dave', 'B', 10), ('jane', 'B', 12), ('john', 'A', 15)]
>>> sorted(student_tuples, key=itemgetter(1,2)) [('john', 'A', 15), ('dave', 'B', 10), ('jane', 'B', 12)] >>> sorted(student_objects, key=attrgetter('grade', 'age')) [('john', 'A', 15), ('dave', 'B', 10), ('jane', 'B', 12)]
4)升序和降序
list.sort()和sorted()都接受一个参数reverse(True or False)来表示升序或降序排序。例如对上面的student降序排序如下:
>>> sorted(student_tuples, key=itemgetter(2), reverse=True) [('john', 'A', 15), ('jane', 'B', 12), ('dave', 'B', 10)] >>> sorted(student_objects, key=attrgetter('age'), reverse=True) [('john', 'A', 15), ('jane', 'B', 12), ('dave', 'B', 10)]
5)排序的稳定性和复杂排序
从python2.2开始,排序被保证为稳定的。意思是说多个元素如果有相同的key,则排序前后他们的先后顺序不变。
>>> data = [('red', 1), ('blue', 1), ('red', 2), ('blue', 2)] >>> sorted(data, key=itemgetter(0)) [('blue', 1), ('blue', 2), ('red', 1), ('red', 2)]
>>> s = sorted(student_objects, key=attrgetter('age')) # sort on secondary key >>> sorted(s, key=attrgetter('grade'), reverse=True) # now sort on primary key, descending [('dave', 'B', 10), ('jane', 'B', 12), ('john', 'A', 15)]
6)最老土的排序方法-DSU
我们称其为DSU(Decorate-Sort-Undecorate),原因为排序的过程需要下列三步:
第一:对原始的list进行装饰,使得新list的值可以用来控制排序;
第二:对装饰后的list排序;
第三:将装饰删除,将排序后的装饰list重新构建为原来类型的list;
例如,使用DSU方法来对student数据根据grade排序:
>>> decorated = [(student.grade, i, student) for i, student in enumerate(student_objects)]
>>> decorated.sort()
>>> [student for grade, i, student in decorated] # undecorate
[('john', 'A', 15), ('jane', 'B', 12), ('dave', 'B', 10)]
上面的比较能够工作,原因是tuples是可以用来比较,tuples间的比较首先比较tuples的第一个元素,如果第一个相同再比较第二个元素,以此类推。
并不是所有的情况下都需要在以上的tuples中包含索引,但是包含索引可以有以下好处:
第一:排序是稳定的,如果两个元素有相同的key,则他们的原始先后顺序保持不变;
第二:原始的元素不必用来做比较,因为tuples的第一和第二元素用来比较已经是足够了。
此方法被RandalL.在perl中广泛推广后,他的另一个名字为也被称为Schwartzian transform。
对大的list或list的元素计算起来太过复杂的情况下,在python2.4前,DSU很可能是最快的排序方法。但是在2.4之后,上面解释的key函数提供了类似的功能。
7)其他语言普遍使用的排序方法-cmp函数
在python2.4前,sorted()和list.sort()函数没有提供key参数,但是提供了cmp参数来让用户指定比较函数。此方法在其他语言中也普遍存在。
在python3.0中,cmp参数被彻底的移除了,从而简化和统一语言,减少了高级比较和__cmp__方法的冲突。
在python2.x中cmp参数指定的函数用来进行元素间的比较。此函数需要2个参数,然后返回负数表示小于,0表示等于,正数表示大于。例如:
>>> def numeric_compare(x, y): return x - y >>> sorted([5, 2, 4, 1, 3], cmp=numeric_compare) [1, 2, 3, 4, 5]
>>> def reverse_numeric(x, y): return y - x >>> sorted([5, 2, 4, 1, 3], cmp=reverse_numeric) [5, 4, 3, 2, 1]
def cmp_to_key(mycmp): 'Convert a cmp= function into a key= function' class K(object): def __init__(self, obj, *args): self.obj = obj def __lt__(self, other): return mycmp(self.obj, other.obj) < 0 def __gt__(self, other): return mycmp(self.obj, other.obj) > 0 def __eq__(self, other): return mycmp(self.obj, other.obj) == 0 def __le__(self, other): return mycmp(self.obj, other.obj) <= 0 def __ge__(self, other): return mycmp(self.obj, other.obj) >= 0 def __ne__(self, other): return mycmp(self.obj, other.obj) != 0 return K
当需要将cmp转化为key时,只需要:
>>> sorted([5, 2, 4, 1, 3], key=cmp_to_key(reverse_numeric)) [5, 4, 3, 2, 1]
8)其他注意事项
* 对需要进行区域相关的排序时,可以使用locale.strxfrm()作为key函数,或者使用local.strcoll()作为cmp函数。
* reverse参数任然保持了排序的稳定性,有趣的时,同样的效果可以使用reversed()函数两次来实现:
>>> data = [('red', 1), ('blue', 1), ('red', 2), ('blue', 2)] >>> assert sorted(data, reverse=True) == list(reversed(sorted(reversed(data))))
* 其实排序在内部是调用元素的__cmp__来进行的,所以我们可以为元素类型增加__cmp__方法使得元素可比较,例如:
>>> Student.__lt__ = lambda self, other: self.age < other.age >>> sorted(student_objects) [('dave', 'B', 10), ('jane', 'B', 12), ('john', 'A', 15)]
>>> students = ['dave', 'john', 'jane'] >>> newgrades = {'john': 'F', 'jane':'A', 'dave': 'C'} >>> sorted(students, key=newgrades.__getitem__) ['jane', 'dave', 'john']
*当你需要在处理数据的同时进行排序的话,sort(),sorted()或bisect.insort()不是最好的方法。在这种情况下,可以使用heap,red-black tree或treap。