这是一个C ++程序,用于检查给定的三个点是否位于同一行上。如果由三点组成的三角形的面积等于零,则该点位于一条直线上。
三角形的面积是-
0.5 * (x1 * (y2 - y3) + x2 * (y3 - y1) + x3 * (y1 - y2)).
Begin Generate the points randomly. Calculate the area by using above formula. If area > 0 Then the points don't lie on the straight line. else if area < 0 Then the points don't lie on the straight line. else The points lie on the straight line. End
#include <iostream> #include <time.h> #include <stdlib.h> using namespace std; static int L = 1; static int U= 20; int main(int argc, char **argv) { int x3, y3, x1, x2, y1, y2; time_t seconds; time(&seconds); srand((unsigned int) seconds); //Generate the points randomly using rand(). x1 = rand() % ( U- L+ 1) + L; y1 = rand() % (U - L+ 1) + L; x2 = rand() % (U - L + 1) + L; y2 = rand() % (U - L+ 1) + L; x3 = rand() % (U - L+ 1) + L; y3 = rand() % (U - L+ 1) + L; cout << "The points are: (" << x1 << ", " << y1 << "), (" << x2 << ", " << y2 << "), & (" << x3 << ", " << y3 << ")\n"; //计算面积 float a = 0.5 *(x1 * (y2 - y3) + x2 * (y3 - y1) + x3 * (y1 - y2)); if (a < 0) cout << "The points don't lie on the straight line"; else if (a > 0) cout << "The points don't lie on the straight line "; else cout << "The points lie on the straight line"; }
输出结果
The points are: (20, 9), (6, 13), & (13, 11) The points lie on the straight line The points are: (9, 15), (4, 15), & (11, 16) The points don't lie on the straight line