这是一个演示4色问题实现的C ++程序。
Begin Develop function issafe() to check if the current color assignment is safe for vertex v i.e. checks whether the edge exists or not. If it exists, then next check whether the color to be filled in the new vertex is already used by its adjacent vertices. End Begin Function graphColoringtil(bool graph[V][V], int m, int col[], int v) solve 4 coloring problem: Here, g[V][V] = It is a 2D array where V is the number of vertices in graph m = maximum number of colors that can be used. col[] = an color array that should have numbers from 1 to m. if v == V return true For c = 1 to m if (isSafe(v, g, col, c)) col[v] = c if (graphColoringtil (g, k, col, v+1) == true) return true col[v] = 0 return false End Begin function graphColor(): It mainly uses graphColoringUtil() to solve the problem. It returns false if the m colors cannot be assigned, otherwise return true. End
#include <iostream> #include <cstdio> #define V 5 using namespace std; bool isSafe (int v, bool graph[V][V], int col[], int C) { for (int i = 0; i < V; i++) if (graph[v][i] && C == col[i]) return false; return true; } bool graphColoringtil(bool g[V][V], int k, int col[], int v) { if (v == V) //If all vertices are assigned a color then return true; for (int c = 1; c <= k; c++) { //Consider this vertex v and try different colors if (isSafe(v, g, col, c)) { //Check if assignment of color c to v is fine col[v] = c; if (graphColoringtil (g, k, col, v+1) == true) //recur to assign colors to rest of the vertices return true; col[v] = 0; //If assigning color c doesn't lead to a solution then remove it } } return false; } void solution(int color[]) { cout<<"The assigned colors are: \n"; for (int i = 0; i < V; i++) cout<<color[i]; cout<<"\n"; } bool graphColor(bool graph[V][V], int k) { int *color = new int[V]; //将所有颜色值初始化为0- for (int i = 0; i < V; i++) color[i] = 0; if (graphColoringtil(graph, k, color, 0) == false) { cout<<"Solution does not exist"; return false; } solution(color); return true; } int main() { bool g[V][V] = { {0, 0, 1, 0,1}, {1, 1, 1, 0,0}, {1, 1, 0, 0,1}, {0, 1, 1, 0,0} }; int k= 4; graphColor(g, k); return 0; }
输出结果
The assigned colors are: 1 2 3 1 1