如何复制整个数据帧并将其添加到R中的原始数据帧中?

可以使用sapply函数在R中创建数据帧的副本,以使用rep.int,times参数设置要重复数据帧的次数。例如,如果我们有一个数据帧df,并且想要创建df的5个副本并将它们添加到原始副本中,则可以使用sapply(df,rep.int,times = 5)。

示例

请看以下数据帧-

set.seed(151)
x1<-rnorm(5,21,3)
x2<-rnorm(5,8,1.9)
x3<-rnorm(5,3,0.08)
x4<-rnorm(5,1008,32.4)
df<-data.frame(x1,x2,x3,x4)
df

输出结果

      x1       x2       x3       x4
1 20.84538 9.486324 2.961236 967.9296
2 23.29721 5.344792 3.044849 960.2204
3 20.55978 6.064207 3.005293 1086.9639
4 20.66044 8.436004 2.892010 1029.8222
5 19.81347 9.277129 2.980567 1018.0453

复制df两次-

sapply(df,rep.int,times=2)

输出结果

      x1       x2       x3       x4
[1,] 20.84538 9.486324 2.961236 967.9296
[2,] 23.29721 5.344792 3.044849 960.2204
[3,] 20.55978 6.064207 3.005293 1086.9639
[4,] 20.66044 8.436004 2.892010 1029.8222
[5,] 19.81347 9.277129 2.980567 1018.0453
[6,] 20.84538 9.486324 2.961236 967.9296
[7,] 23.29721 5.344792 3.044849 960.2204
[8,] 20.55978 6.064207 3.005293 1086.9639
[9,] 20.66044 8.436004 2.892010 1029.8222
[10,] 19.81347 9.277129 2.980567 1018.0453

复制df 3次-

sapply(df,rep.int,times=3)

输出结果

      x1       x2       x3       x4
[1,] 20.84538 9.486324 2.961236 967.9296
[2,] 23.29721 5.344792 3.044849 960.2204
[3,] 20.55978 6.064207 3.005293 1086.9639
[4,] 20.66044 8.436004 2.892010 1029.8222
[5,] 19.81347 9.277129 2.980567 1018.0453
[6,] 20.84538 9.486324 2.961236 967.9296
[7,] 23.29721 5.344792 3.044849 960.2204
[8,] 20.55978 6.064207 3.005293 1086.9639
[9,] 20.66044 8.436004 2.892010 1029.8222
[10,] 19.81347 9.277129 2.980567 1018.0453
[11,] 20.84538 9.486324 2.961236 967.9296
[12,] 23.29721 5.344792 3.044849 960.2204
[13,] 20.55978 6.064207 3.005293 1086.9639
[14,] 20.66044 8.436004 2.892010 1029.8222
[15,] 19.81347 9.277129 2.980567 1018.0453

复制df四次-

示例

sapply(df,rep.int,times=4)

输出结果

      x1       x2       x3       x4
[1,] 20.84538 9.486324 2.961236 967.9296
[2,] 23.29721 5.344792 3.044849 960.2204
[3,] 20.55978 6.064207 3.005293 1086.9639
[4,] 20.66044 8.436004 2.892010 1029.8222
[5,] 19.81347 9.277129 2.980567 1018.0453
[6,] 20.84538 9.486324 2.961236 967.9296
[7,] 23.29721 5.344792 3.044849 960.2204
[8,] 20.55978 6.064207 3.005293 1086.9639
[9,] 20.66044 8.436004 2.892010 1029.8222
[10,] 19.81347 9.277129 2.980567 1018.0453
[11,] 20.84538 9.486324 2.961236 967.9296
[12,] 23.29721 5.344792 3.044849 960.2204
[13,] 20.55978 6.064207 3.005293 1086.9639
[14,] 20.66044 8.436004 2.892010 1029.8222
[15,] 19.81347 9.277129 2.980567 1018.0453
[16,] 20.84538 9.486324 2.961236 967.9296
[17,] 23.29721 5.344792 3.044849 960.2204
[18,] 20.55978 6.064207 3.005293 1086.9639
[19,] 20.66044 8.436004 2.892010 1029.8222
[20,] 19.81347 9.277129 2.980567 1018.0453

复制df五次-

示例

sapply(df,rep.int,times=5)

输出结果

      x1          x2       x3    x4
[1,] 20.84538 9.486324 2.961236 967.9296
[2,] 23.29721 5.344792 3.044849 960.2204
[3,] 20.55978 6.064207 3.005293 1086.9639
[4,] 20.66044 8.436004 2.892010 1029.8222
[5,] 19.81347 9.277129 2.980567 1018.0453
[6,] 20.84538 9.486324 2.961236 967.9296
[7,] 23.29721 5.344792 3.044849 960.2204
[8,] 20.55978 6.064207 3.005293 1086.9639
[9,] 20.66044 8.436004 2.892010 1029.8222
[10,] 19.81347 9.277129 2.980567 1018.0453
[11,] 20.84538 9.486324 2.961236 967.9296
[12,] 23.29721 5.344792 3.044849 960.2204
[13,] 20.55978 6.064207 3.005293 1086.9639
[14,] 20.66044 8.436004 2.892010 1029.8222
[15,] 19.81347 9.277129 2.980567 1018.0453
[16,] 20.84538 9.486324 2.961236 967.9296
[17,] 23.29721 5.344792 3.044849 960.2204
[18,] 20.55978 6.064207 3.005293 1086.9639
[19,] 20.66044 8.436004 2.892010 1029.8222
[20,] 19.81347 9.277129 2.980567 1018.0453
[21,] 20.84538 9.486324 2.961236 967.9296
[22,] 23.29721 5.344792 3.044849 960.2204
[23,] 20.55978 6.064207 3.005293 1086.9639
[24,] 20.66044 8.436004 2.892010 1029.8222
[25,] 19.81347 9.277129 2.980567 1018.0453