矩阵分析可能需要对角元素的总和,因此,我们可以将矩阵转换为表格并找到对角元素的总和。通过使用sun函数,可以使用diag函数提取表的对角线元素,从而轻松完成此操作。例如,如果我们有一个表T,则可以找到T的对角元素之和为sum(diag(T))。
Table1<-as.table(matrix(1:25,ncol=5)) Table1
输出结果
A B C D E A 1 6 11 16 21 B 2 7 12 17 22 C 3 8 13 18 23 D 4 9 14 19 24 E 5 10 15 20 25
sum(diag(Table1))
输出结果
[1] 65
Table2<-as.table(matrix(1:100,ncol=10)) Table2
输出结果
A B C D E F G H I J A 1 11 21 31 41 51 61 71 81 91 B 2 12 22 32 42 52 62 72 82 92 C 3 13 23 33 43 53 63 73 83 93 D 4 14 24 34 44 54 64 74 84 94 E 5 15 25 35 45 55 65 75 85 95 F 6 16 26 36 46 56 66 76 86 96 G 7 17 27 37 47 57 67 77 87 97 H 8 18 28 38 48 58 68 78 88 98 I 9 19 29 39 49 59 69 79 89 99 J 10 20 30 40 50 60 70 80 90 100
sum(diag(Table2))
输出结果
[1] 505
Table3<-as.table(matrix(rnorm(36),nrow=6)) Table3
输出结果
A B C D E F A -0.02015819 -2.14686269 -0.79392704 -0.55050284 0.23070052 0.13070019 B -0.39663252 -0.12698078 -0.09832510 -1.41939702 -0.49657164 -0.45341576 C 0.23753427 0.78309823 2.11059813 -0.41943086 -0.33058117 0.63018308 D -2.03889403 1.33432969 1.65307088 1.67585600 -1.49239102 -0.67350890 E -0.61901214 -0.89328172 1.03601932 -0.16994050 0.73360113 0.42438789 F -1.09296499 -1.10922272 0.04226664 2.58299950 0.51644977 0.41344741
sum(diag(Table3))
输出结果
[1] -1.493482
Table4<-as.table(matrix(rnorm(36,100,5),nrow=6)) Table4
输出结果
A B C D E F A 105.44635 93.14600 97.80468 100.68027 95.28400 100.82330 B 95.16300 98.87825 98.75319 96.53916 108.81398 99.40972 C 94.99926 105.25513 100.37713 100.96798 93.41062 101.70070 D 99.21070 99.82776 88.46770 97.40873 102.29429 95.97573 E 98.70941 95.46398 101.49608 102.96491 101.35786 105.05309 F 102.20267 101.30244 100.53210 91.06927 87.33858 102.15255
sum(diag(Table4))
输出结果
[1] 608.7968
Table5<-as.table(matrix(rnorm(25,500,50),nrow=5)) Table5
输出结果
A B C D E A 505.2863 493.6967 542.0539 577.7998 504.0781 B 500.1169 518.8777 403.9920 569.6609 506.1925 C 410.2091 404.1374 521.1845 547.0921 489.7272 D 520.4017 491.4741 502.0402 453.0907 490.6733 E 499.4468 520.5062 449.8988 541.2709 562.4680
sum(diag(Table5))
输出结果
[1] 2422.402
Table6<-as.table(matrix(runif(25,5,10),nrow=5)) Table6
输出结果
A B C D E A 9.957061 8.584646 6.731691 6.645764 6.343259 B 7.157706 5.733703 5.630403 9.290109 5.232770 C 8.244165 5.308932 5.100177 6.389525 7.758126 D 6.445069 8.942210 5.995070 6.302655 8.955960 E 8.200180 7.202910 9.770459 6.822972 6.435597
sum(diag(Table6))
输出结果
[1] 31.74213
Table7<-as.table(matrix(rexp(25,3.5),nrow=5)) Table7
输出结果
A B C D E A 0.29068590 0.27290414 0.55115684 0.23493220 0.51366603 B 0.69828775 0.39694271 0.08617531 0.01405418 0.29315770 C 0.07375495 0.14626855 0.36778766 0.58536517 0.38151674 D 0.02949406 0.01493486 0.23719988 0.01521633 0.03468193 E 0.08120215 0.42675242 0.33896103 0.34181323 0.06136357
sum(diag(Table7))
输出结果
[1] 0.310424
Table10<-as.table(matrix(rpois(100,15),ncol=10)) Table10
输出结果
A B C D E F G H I J A 22 21 16 13 10 17 10 6 11 13 B 9 13 17 15 18 8 12 17 12 12 C 22 24 17 14 15 17 12 19 18 18 D 15 15 20 19 12 17 13 14 7 16 E 18 10 15 15 6 15 13 27 22 11 F 9 14 11 8 15 10 19 12 17 14 G 17 14 13 12 11 12 14 16 12 18 H 15 18 13 18 18 20 13 15 6 20 I 16 16 15 14 12 15 9 17 14 14 J 13 20 21 13 18 17 11 16 15 15
sum(diag(Table10))
输出结果
[1] 156