在这个问题中,我们得到了一个连续读取整数的数据流。我们的任务是创建一个程序,该程序将读取元素并计算这些元素的中值。
数组的中值是排序序列中的中间元素(可以是升序或降序)。
对于奇数,中位数是中间元素
对于偶数,中位数是两个中间元素的平均值
让我们举个例子来了解这个问题,
输入-3、65、12、20、1
在每个输入处
Input - 3 : sequence -(3) : median - 3 Input - 65 : sequence -(3, 65) : median - 34 Input - 12 : sequence -(3, 12, 65) : median - 12 Input - 20 : sequence -(3, 12, 20, 65) : median - 16 Input - 1 : sequence -(1, 3, 12, 20, 65) : median - 12
我们在这里使用排序的序列来简化中位数计算。
为了解决此问题,我们有多种解决方案,它们在每一步都使用排序,然后找到中位数,创建自平衡BST或使用堆。堆似乎是找到中位数的最有前途的解决方案。max-heap或min-heap均可为我们提供每次插入的中位数,也是一种有效的解决方案。
显示我们解决方案实施情况的程序,
#include <iostream> using namespace std; #define MAX_HEAP_SIZE (128) #define ARRAY_SIZE(a) sizeof(a)/sizeof(a[0]) void swap(int &a, int &b){ int temp = a; a = b; b = temp; } bool Greater(int a, int b){ return a > b; } bool Smaller(int a, int b){ return a < b; } int Signum(int a, int b){ if( a == b ) return 0; return a < b ? -1 : 1; } class Heap{ public: Heap(int *b, bool (*c)(int, int)) : A(b), comp(c) { heapSize = -1; } virtual bool Insert(int e) = 0; virtual int GetTop() = 0; virtual int ExtractTop() = 0; virtual int GetCount() = 0; protected: int left(int i) { return 2 * i + 1; } int right(int i) { return 2 * (i + 1); } int parent(int i) { if( i <= 0 ){ return -1; } return (i - 1)/2; } int *A; bool (*comp)(int, int); int heapSize; int top(void){ int max = -1; if( heapSize >= 0 ) max = A[0]; return max; } int count() { return heapSize + 1; } void heapify(int i){ int p = parent(i); if( p >= 0 && comp(A[i], A[p]) ) { swap(A[i], A[p]); heapify(p); } } int deleteTop(){ int del = -1; if( heapSize > -1){ del = A[0]; swap(A[0], A[heapSize]); heapSize--; heapify(parent(heapSize+1)); } return del; } bool insertHelper(int key){ bool ret = false; if( heapSize < MAX_HEAP_SIZE ){ ret = true; heapSize++; A[heapSize] = key; heapify(heapSize); } return ret; } }; class MaxHeap : public Heap { private: public: MaxHeap() : Heap(new int[MAX_HEAP_SIZE], &Greater) { } int GetTop() { return top(); } int ExtractTop() { return deleteTop(); } int GetCount() { return count(); } bool Insert(int key) { return insertHelper(key); } }; class MinHeap : public Heap{ private: public: MinHeap() : Heap(new int[MAX_HEAP_SIZE], &Smaller) { } int GetTop() { return top(); } int ExtractTop() { return deleteTop(); } int GetCount() { return count(); } bool Insert(int key) { return insertHelper(key); } }; int findMedian(int e, int &median, Heap &left, Heap &right){ switch(Signum(left.GetCount(), right.GetCount())){ case 0: if( e < median ) { left.Insert(e); median = left.GetTop(); } else{ right.Insert(e); median = right.GetTop(); } break; case 1: if( e < median ){ right.Insert(left.ExtractTop()); left.Insert(e); } else right.Insert(e); median = ((left.GetTop()+right.GetTop())/2); break; case -1: if( e < median ) left.Insert(e); else { left.Insert(right.ExtractTop()); right.Insert(e); } median = ((left.GetTop()+right.GetTop())/2); break; } return median; } void printMedianStream(int A[], int size){ int median = 0; Heap *left = new MaxHeap(); Heap *right = new MinHeap(); for(int i = 0; i < size; i++) { median = findMedian(A[i], median, *left, *right); cout<<"Median of elements : "; for(int j = 0; j<=i;j++) cout<<A[j]<<" "; cout<<"is "<<median<<endl; } } int main(){ int A[] = {12, 54, 9, 6, 1}; int size = ARRAY_SIZE(A); printMedianStream(A, size); return 0; }
输出结果
Median of elements : 12 is 12 Median of elements : 12 54 is 33 Median of elements : 12 54 9 is 12 Median of elements : 12 54 9 6 is 10 Median of elements : 12 54 9 6 1 is 9