假设您有一个数据框,并且根据分组数据和相应列计算协方差的结果为,
Grouped data covariance is: mark1 mark2 subjects maths mark1 25.0 12.500000 mark2 12.5 108.333333 science mark1 28.0 50.000000 mark2 50.0 233.333333 Grouped data covariance between two columns: subjects maths 12.5 science 50.0 dtype: float64
为了解决这个问题,我们将遵循以下步骤-
定义一个数据框
在数据框主题列中应用groupby函数
df.groupby('subjects')
将协方差函数应用于分组数据并存储固有的group_data,
group_data = df.groupby('subjects').cov()
将lambda函数应用于主题列中具有groupby记录的mark1和mark2列。它的定义如下
df.groupby('subjects').apply(lambda x: x['mark1'].cov(x['mark2']
让我们看下面的代码以获得更好的理解-
import pandas as pd df = pd.DataFrame({'subjects':['maths','maths','maths','science','science','science'], 'mark1':[80,90,85,95,93,85], 'mark2':[85,90,70,75,95,65]}) print("DataFrame is:\n",df) group_data = df.groupby('subjects').cov() print("Grouped data covariance is:\n", group_data) result = df.groupby('subjects').apply(lambda x: x['mark1'].cov(x['mark2'])) print("Grouped data covariance between two columns:\n",result)
DataFrame is: subjects mark1 mark2 0 maths 80 85 1 maths 90 90 2 maths 85 70 3 science 95 75 4 science 93 95 5 science 85 65 Grouped data covariance is: mark1 mark2 subjects maths mark1 25.0 12.500000 mark2 12.5 108.333333 science mark1 28.0 50.000000 mark2 50.0 233.333333 Grouped data covariance between two columns: subjects maths 12.5 science 50.0 dtype: float64