Tensorflow如何用于使用Python训练Illiad数据集?

Tensorflow是Google提供的一种机器学习框架。它是一个开放源代码框架,可与Python结合使用,以实现算法,深度学习应用程序等等。它用于研究和生产目的。它具有优化技术,可帮助快速执行复杂的数学运算。这是因为它使用了NumPy和多维数组。这些多维数组也称为“张量”。该框架支持使用深度神经网络

可以使用下面的代码行在Windows上安装'tensorflow'软件包-

pip install tensorflow

Tensor是TensorFlow中使用的数据结构。它有助于连接流程图中的边缘。该流程图称为“数据流程图”。张量不过是多维数组或列表。

我们将使用Illiad的数据集,其中包含来自William Cowper,Edward(德比伯爵)和Samuel Butler的三本翻译作品的文本数据。当给出单行文本时,训练模型以识别翻译器。使用的文本文件已经过预处理。这包括删除文档的页眉和页脚,行号和章节标题。

我们正在使用Google合作实验室来运行以下代码。Google Colab或Colaboratory可以帮助通过浏览器运行Python代码,并且需要零配置和对GPU(图形处理单元)的免费访问。合作已建立在Jupyter Notebook的基础上。

示例

以下是代码片段-

vocab_size += 2

print("Configure the dataset for better performance")
train_data = configure_dataset(train_data)
validation_data = configure_dataset(validation_data)

print("Train the model")
model = create_model(vocab_size=vocab_size, num_labels=3)
model.compile(
   optimizer='adam',
   loss=losses.SparseCategoricalCrossentropy(from_logits=True),
   metrics=['accuracy'])
print("Fit the training data to the model")
history = model.fit(train_data, validation_data=validation_data, epochs=3)

print("Finding the accuracy and loss associated with training")
loss, accuracy = model.evaluate(validation_data)

print("损失是: ", loss)
print("The accuracy is : {:2.2%}".format(accuracy))

代码信用-https://www.tensorflow.org/tutorials/load_data/text

输出结果

Configure the dataset for better performance
Train the model
Fit the training data to the model
Epoch 1/3
697/697 [==============================] - 35s 17ms/step - loss: 0.6891 - accuracy: 0.6736 -
val_loss: 0.3718 - val_accuracy: 0.8404
Epoch 2/3
697/697 [==============================] - 8s 11ms/step - loss: 0.3149 - accuracy: 0.8713 -
val_loss: 0.3621 - val_accuracy: 0.8422
Epoch 3/3
697/697 [==============================] - 8s 11ms/step - loss: 0.2165 - accuracy: 0.9162 -
val_loss: 0.4002 - val_accuracy: 0.8404
Finding the accuracy and loss associated with training
79/79 [==============================] - 1s 2ms/step - loss: 0.4002 - accuracy: 0.8404
损失是: 0.40021833777427673
The accuracy is : 84.04%

解释

  • 在预处理的矢量化数据集上训练模型。

  • 完成后,将其编译并适合模型。

  • 使用“评估”方法评估与模型相关的损失和准确性。

  • 此数据显示在控制台上。