假设我们已经知道梯度法——最速下降法的原理。
现给出一个算例:
如果人工直接求解:
现给出Python求解过程:
import numpy as np from sympy import * import math import matplotlib.pyplot as plt import mpl_toolkits.axisartist as axisartist # 定义符号 x1, x2, t = symbols('x1, x2, t') def func(): # 自定义一个函数 return pow(x1, 2) + 2 * pow(x2, 2) - 2 * x1 * x2 - 2 * x2 def grad(data): # 求梯度向量,data=[data1, data2] f = func() grad_vec = [diff(f, x1), diff(f, x2)] # 求偏导数,梯度向量 grad = [] for item in grad_vec: grad.append(item.subs(x1, data[0]).subs(x2, data[1])) return grad def grad_len(grad): # 梯度向量的模长 vec_len = math.sqrt(pow(grad[0], 2) + pow(grad[1], 2)) return vec_len def zhudian(f): # 求得min(t)的驻点 t_diff = diff(f) t_min = solve(t_diff) return t_min def main(X0, theta): f = func() grad_vec = grad(X0) grad_length = grad_len(grad_vec) # 梯度向量的模长 k = 0 data_x = [0] data_y = [0] while grad_length > theta: # 迭代的终止条件 k += 1 p = -np.array(grad_vec) # 迭代 X = np.array(X0) + t*p t_func = f.subs(x1, X[0]).subs(x2, X[1]) t_min = zhudian(t_func) X0 = np.array(X0) + t_min*p grad_vec = grad(X0) grad_length = grad_len(grad_vec) print('grad_length', grad_length) print('坐标', X0[0], X0[1]) data_x.append(X0[0]) data_y.append(X0[1]) print(k) # 绘图 fig = plt.figure() ax = axisartist.Subplot(fig, 111) fig.add_axes(ax) ax.axis["bottom"].set_axisline_style("-|>", size=1.5) ax.axis["left"].set_axisline_style("->", size=1.5) ax.axis["top"].set_visible(False) ax.axis["right"].set_visible(False) plt.title(r'$Gradient \ method - steepest \ descent \ method$') plt.plot(data_x, data_y, label=r'$f(x_1,x_2)=x_1^2+2 \cdot x_2^2-2 \cdot x_1 \cdot x_2-2 \cdot x_2$') plt.legend() plt.scatter(1, 1, marker=(5, 1), c=5, s=1000) plt.grid() plt.xlabel(r'$x_1$', fontsize=20) plt.ylabel(r'$x_2$', fontsize=20) plt.show() if __name__ == '__main__': # 给定初始迭代点和阈值 main([0, 0], 0.00001)
最终结果图如下所示:
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持呐喊教程。
声明:本文内容来源于网络,版权归原作者所有,内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:notice#nhooo.com(发邮件时,请将#更换为@)进行举报,并提供相关证据,一经查实,本站将立刻删除涉嫌侵权内容。