有向无环图(DAG)是有向图,没有连接其他边的循环。该图的边缘有一种方式。这是一个C ++程序,用于检查图形是否为DAG。
BeginFunction checkDAG(int n): intialize count = 0 intialize size = n - 1 for i = 0 to n-1 if (count == size) return 1 done if (arr[i].ptr == NULL) increment count for j = 0 to n-1 while (arr[j].ptr != NULL) if ((arr[j].ptr)->d == (arr[i].ptr)->d) (arr[j].ptr)->d = -1 done arr[i].ptr = (arr[i].ptr)->next done done done done return 0 End
#include<iostream> using namespace std; int c = 0; struct ad_list { //A structure of type adj_list int d; ad_list *next; } *np = NULL, *np1 = NULL, *p = NULL, *q = NULL; struct Gr { //A structure of type Gr int v; ad_list *ptr; } arr[6]; void addRevEdge(int s, int d) { //add reverse edges in the graph np1 = new ad_list; np1->d = s; np1->next = NULL; if (arr[d].ptr == NULL) { arr[d].ptr = np1; q = arr[d].ptr; q->next = NULL; } else { q = arr[d].ptr; while (q->next != NULL) { q = q->next; } q->next = np1; } } void addEdge(int s, int d) { // add edges in the graph np = new ad_list; np->d = d; np->next = NULL; if (arr[s].ptr == NULL) { arr[s].ptr = np; p = arr[s].ptr; p->next = NULL; } else { p = arr[s].ptr; while (p->next != NULL) { p = p->next; } p->next = np; } } void print_g(int n) { for (int i = 0; i < n; i++) { cout << "Adjacency List of " << arr[i].v << ": "; while (arr[i].ptr != NULL) { cout << (arr[i].ptr)->d<< " "; arr[i].ptr = (arr[i].ptr)->next; } cout << endl; } } int checkDAG(int n) { int count = 0; int size = n - 1; for (int i = 0; i < n; i++) { if (count == size) { return 1; } if (arr[i].ptr == NULL) { count++; for (int j = 0; j < n; j++) { while (arr[j].ptr != NULL) { if ((arr[j].ptr)->d == (arr[i].ptr)->d) { (arr[j].ptr)->d = -1; } arr[i].ptr = (arr[i].ptr)->next; } } } } return 0; } int main() { int v = 4; cout << "Number of vertices: " << v << endl; for (int i = 0; i < v; i++) { arr[i].v = i; arr[i].ptr = NULL; } addEdge(1, 0); addEdge(3, 1); addEdge(2, 1); addEdge(0, 3); addEdge(4, 1); print_g(v); cout << "The given graph is 'Directed Acyclic Graph' :"; if (checkDAG(v) == 1) cout << " yes"; else cout << " no"; }
输出结果
Number of vertices: 4 Adjacency List of 0: 3 Adjacency List of 1: 0 Adjacency List of 2: 1 Adjacency List of 3: 1 The given graph is 'Directed Acyclic Graph' : yes