这是一个C ++程序,用于查找任何代数表达式的最大值。(x1 + x2 + x3 + .. + xa)*(y1 + y2 + .. + yb)和(a + b )给出整数。考虑一个数字和其余b个数字的所有可能组合并计算其值,从而可以得出最大值。
Begin function MaxValue() : Arguments: a[]=array which store the elements. x, y=integers. Body of the function: 1) Find the sum of array elements. 2) Initialize s = 0. 3) Make for loop i = 0 to (x + y-1) Shift the integers by 25 so that they become positive . 4) Declare a boolean array p[i][j] that represents true if sum j can be reachable by choosing i numbers. 5) Initialization of the array. 6) Make for loop i = 0 to (x + y)-1 to determine If p[i][j] is true, that means it is possible to select i numbers from (x + y) numbers to sum upto j. 7) Initialize max_value = -INF. 8) Make for loop i = 0 to (MAX * MAX + 1)-1 to Check if a particular sum can be reachable by choosing n numbers. if (p[x][i]) Get the actual sum as we shifted the numbers by 25 to avoid negative indexing in array . 9) Print the max_value. End
#include <bits/stdc++.h> using namespace std; #define INF 1e9 #define MAX 25 int MaxValue(int a[], int x, int y) { int s= 0; for (int i = 0; i < (x + y); i++) { s+= a[i]; a[i] += 25; } bool p[MAX+1][MAX * MAX + 1]; //Initialize the array to 01. memset(p, 0, sizeof(p)); p[0][0] = 1; for (int i = 0; i < (x + y); i++) { //k can be at max x because the // left expression has x numbers for (int k = min(x, i + 1); k >= 1; k--) { for (int j = 0; j < MAX * MAX + 1; j++) { if (p[k - 1][j]) p[k][j + a[i]] = 1; } } } int max_value = -INF; for (int i = 0; i < MAX * MAX + 1; i++) { if (p[x][i]) { int tmp = i - 25 * x; max_value = max(max_value, tmp * (s - tmp)); } } cout << "Maximum Value: " << max_value ; } int main() { int x = 2, y = 2; //input is taken of x and y. int ar[] = { 7,6,4,3 }; MaxValue(ar, x, y); return 0; }
输出结果
Maximum Value: 100