这是一个C ++程序,用于查找图矩阵的逆。仅当矩阵非奇异(即行列式不应该为0)时,才存在矩阵的逆。矩阵的逆可以以许多方式找出。在这里,我们使用伴随矩阵及其行列式找出图矩阵的逆。示例中涉及的步骤
Begin function INV() to get the inverse of the matrix: Call function DET(). Call function ADJ(). Find the inverse of the matrix using the formula; Inverse(matrix) = ADJ(matrix) / DET(matrix) End.
#include<bits/stdc++.h> using namespace std; #define N 5 void getCfactor(int M[N][N], int t[N][N], int p, int q, int n) { int i = 0, j = 0; for (int r= 0; r< n; r++) { for (int c = 0; c< n; c++) //Copy only those elements which are not in given row r and column c: { if (r != p && c != q) { t[i][j++] = M[r][c]; //If row is filled increase r index and reset c index if (j == n - 1) { j = 0; i++; } } } } } int DET(int M[N][N], int n) //to find determinant { int D = 0; if (n == 1) return M[0][0]; int t[N][N]; //store cofactors int s = 1; //store sign multiplier // To Iterate each element of first row for (int f = 0; f < n; f++) { //要获取M [0] [f]的辅因子,请执行getCfactor(M,t,0,f,n); D + = s * M [0] [f] * DET(t,n-1); s = -s; } return D; } void ADJ(int M[N][N],int adj[N][N]) //查找伴随矩阵{ if (N == 1) { adj[0][0] = 1; return; } int s = 1, t[N][N]; for (int i=0; i<N; i++) { for (int j=0; j<N; j++) { //辅因子 getCfactor(M, t, i, j, N); s = ((i+j)%2==0)? 1: -1; //sign of adj[j][i] positive if sum of row and column indexes is even. adj[j][i] = (s)*(DET(t, N-1)); //Interchange rows and columns to get the transpose of the cofactor matrix } } } bool INV(int M[N][N], float inv[N][N]) { int det = DET(M, N); if (det == 0) { cout << "can't find its inverse"; return false; } int adj[N][N]; ADJ(M, adj); for (int i=0; i<N; i++) for (int j=0; j<N; j++) inv[i][j] = adj[i][j]/float(det); return true; } template<class T> void print(T A[N][N]) //print the matrix. { for (int i=0; i<N; i++) { for (int j=0; j<N; j++) cout << A[i][j] << " "; cout << endl; } } int main() { int M[N][N] = { {1, 2, 3, 4,-2}, {-5, 6, 7, 8, 4}, {9, 10, -11, 12, 1}, {13, -14, -15, 0, 9}, {20 , -26 , 16 , -17 , 25} }; float inv[N][N]; cout << "Input matrix is :\n"; print(M); cout << "\nThe Inverse is :\n"; if (INV(M, inv)) print(inv); return 0; }
输出结果
Input matrix is : 1 2 3 4 -2 -5 6 7 8 4 9 10 -11 12 1 13 -14 -15 0 9 20 -26 16 -17 25 The Inverse is : 0.0811847 -0.0643008 0.0493814 -0.0247026 0.0237006 -0.126819 -0.0161738 0.0745377 -0.0713976 0.0151639 0.0933664 0.0028245 -0.0111876 -0.0220437 0.0154006 0.143624 0.0582573 -0.0282371 0.0579023 -0.0175466 -0.15893 0.0724272 0.0259728 -0.00100988 0.0150219