这是一个C ++程序,其中我们为给定的边缘'e'生成无向随机图。该算法基本上在大型网络上实现,该算法的时间复杂度为O(log(n))。
Begin Function GenerateRandomGraphs(), has ‘e’ as the number edges in the argument list. Initialize i = 0 while(i < e) edge[i][0] = rand()%N+1 edge[i][1] = rand()%N+1 Increment I; For i = 0 to N-1 Initialize count = 0 For j = 0 to e-1 if(edge[j][0] == i+1) Print edge[j][1] Increase count else if(edge[j][1] == i+1) Print edge[j][0] Increase count else if(j == e-1 && count == 0) Print Isolated Vertex End
#include<iostream> #include<stdlib.h> #define N 10 using namespace std; void GenerateRandomGraphs(int e) { int i, j, edge[e][2], count; i = 0; //生成两个随机数之间的连接,对于//小样本,将顶点数限制为10。- while(i < e) { edge[i][0] = rand()%N+1; edge[i][1] = rand()%N+1; i++; } //打印每个顶点的所有连接,而与//方向无关。 cout<<"\nThe generated random graph is: "; for(i = 0; i < N; i++) { count = 0; cout<<"\n\t"<<i+1<<"-> { "; for(j = 0; j < e; j++) { if(edge[j][0] == i+1) { cout<<edge[j][1]<<" "; count++; } else if(edge[j][1] == i+1) { cout<<edge[j][0]<<" "; count++; } //打印零度顶点的“隔离顶点”。 else if(j == e-1 && count == 0) cout<<"孤立的顶点!"; } cout<<" }"; } } int main() { int n, i ,e; cout<<"Enter the number of edges for the random graphs: "; cin>>e; GenerateRandomGraphs(e); }
输出结果
Enter the number of edges for the random graphs: 10 The generated random graph is: 1-> { 10 7 } 2-> { 10 } 3-> { 7 8 7 } 4-> { 7 6 7 } 5-> { 孤立的顶点! } 6-> { 8 4 } 7-> { 4 3 4 1 3 } 8-> { 6 3 } 9-> { 孤立的顶点! } 10-> { 2 1 }