合并排序技术基于分而治之。我们将整个数据集分成较小的部分,然后按排序顺序将它们合并成较大的部分。在最坏情况下它也非常有效,因为该算法在最坏情况下的时间复杂度也较低。
时间复杂度: 所有情况下为O(n log n)
空间复杂度: O(n)
Input: The unsorted list: 14 20 78 98 20 45 Output: Array before Sorting: 14 20 78 98 20 45 Array after Sorting: 14 20 20 45 78 98
合并(数组,左,中,右)
输入- 数据集数组,左,中和右索引
输出- 合并列表
Begin nLeft := m - left+1 nRight := right – m define arrays leftArr and rightArr of size nLeft and nRight respectively for i := 0 to nLeft do leftArr[i] := array[left +1] done for j := 0 to nRight do rightArr[j] := array[middle + j +1] done i := 0, j := 0, k := left while i < nLeft AND j < nRight do if leftArr[i] <= rightArr[j] then array[k] = leftArr[i] i := i+1 else array[k] = rightArr[j] j := j+1 k := k+1 done while i < nLeft do array[k] := leftArr[i] i := i+1 k := k+1 done while j < nRight do array[k] := rightArr[j] j := j+1 k := k+1 done End
mergeSort(array,left,right)
输入- 数据数组以及数组的上下限
输出- 排序的数组
Begin if lower < right then mid := left + (right - left) /2 mergeSort(array, left, mid) mergeSort (array, mid+1, right) merge(array, left, mid, right) End
#include<iostream> using namespace std; void swapping(int &a, int &b) { //swap the content of a and b int temp; temp = a; a = b; b = temp; } void display(int *array, int size) { for(int i = 0; i<size; i++) cout << array[i] << " "; cout << endl; } void merge(int *array, int l, int m, int r) { int i, j, k, nl, nr; //左右子数组的大小 nl = m-l+1; nr = r-m; int larr[nl], rarr[nr]; //填充左右子数组 for(i = 0; i<nl; i++) larr[i] = array[l+i]; for(j = 0; j<nr; j++) rarr[j] = array[m+1+j]; i = 0; j = 0; k = l; //将临时数组转换为实数组 while(i < nl && j<nr) { if(larr[i] <= rarr[j]) { array[k] = larr[i]; i++; }else{ array[k] = rarr[j]; j++; } k++; } while(i<nl) { //extra element in left array array[k] = larr[i]; i++; k++; } while(j<nr) { //extra element in right array array[k] = rarr[j]; j++; k++; } } void mergeSort(int *array, int l, int r) { int m; if(l < r) { int m = l+(r-l)/2; //排序第一和第二个数组 mergeSort(array, l, m); mergeSort(array, m+1, r); merge(array, l, m, r); } } int main() { int n; cout << "Enter the number of elements: "; cin >> n; int arr[n]; //create an array with given number of elements cout << "输入元素:" << endl; for(int i = 0; i<n; i++) { cin >> arr[i]; } cout << "Array before Sorting: "; display(arr, n); mergeSort(arr, 0, n-1); //(n-1) for last index cout << "Array after Sorting: "; display(arr, n); }
输出结果
Enter the number of elements: 6 输入元素: 14 20 78 98 20 45 Array before Sorting: 14 20 78 98 20 45 Array after Sorting: 14 20 20 45 78 98