深度优先搜索(DFS)是一种图遍历算法。在该算法中,给出了一个起始顶点,当找到相邻顶点时,它将首先移动到该相邻顶点并尝试以相同的方式遍历。
它会在整个深度范围内进行尽可能多的移动,然后回溯到先前的顶点以查找新路径。
为了以迭代方式实现DFS,我们需要使用堆栈数据结构。如果我们要递归执行,则不需要外部堆栈,可以为递归调用完成内部堆栈。
Input: The Adjacency matrix of a graph. A B C D E F A 0 1 1 1 0 0 B 1 0 0 1 1 0 C 1 0 0 1 1 0 D 1 1 1 0 1 1 E 0 1 0 1 0 1 F 0 0 1 1 1 0 Output: DFS Traversal: C F E B D A
dfs(vertices, start)
输入:所有顶点的列表以及起始节点。
输出: 遍历图中的所有节点。
Begin initially make the state to unvisited for all nodes push start into the stack while stack is not empty, do pop element from stack and set to u display the node u if u is not visited, then mark u as visited for all nodes i connected to u, do if ith vertex is unvisited, then push ith vertex into the stack mark ith vertex as visited done done End
#include<iostream> #include<stack> using namespace std; #define NODE 6 typedef struct node { int val; int state; //status }node; int graph[NODE][NODE] = { {0, 1, 1, 1, 0, 0}, {1, 0, 0, 1, 1, 0}, {1, 0, 0, 1, 0, 1}, {1, 1, 1, 0, 1, 1}, {0, 1, 0, 1, 0, 1}, {0, 0, 1, 1, 1, 0} }; void dfs(node *vertex, node start) { node u; stack<node> myStack; for(int i = 0; i<NODE; i++) { vertex[i].state = 0; //not visited } myStack.push(start); while(!myStack.empty()) { //弹出并打印节点 u = myStack.top(); myStack.pop(); cout << char(u.val+'A') << " "; if(u.state != 1) { //将顶点状态更新为已访问 u.state = 1; vertex[u.val].state = 1; for(int i = 0; i<NODE; i++) { if(graph[i][u.val]) { if(vertex[i].state == 0) { myStack.push(vertex[i]); vertex[i].state = 1; } } } } } } int main() { node vertices[NODE]; node start; char s; for(int i = 0; i<NODE; i++) { vertices[i].val = i; } s = 'C'; //starting vertex C start.val = s-'A'; cout << "DFS Traversal: "; dfs(vertices, start); cout << endl; }
输出结果
DFS Traversal: C F E B D A