为了合并向量数组,我们可以使用rbind函数。例如,如果我们有多个向量,例如x,y,z大小相同或大小不同,但元素总数为偶数,则可以使用rbind(x,y,z)组合这些向量。查看示例以了解其工作原理。
x1<−rbind(rep(1,5),rep(2,5),rep(3,5)) x1
输出结果
[,1] [,2] [,3] [,4] [,5] [1,] 1 1 1 1 1 [2,] 2 2 2 2 2 [3,] 3 3 3 3 3
x2<−rbind(rep(4,5),rep(5,5),rep(6,5),rep(7,5),rep(8,5),rep(9,5),rep(10,5),rep(11,5),rep(12,5),rep(13,5),rep(14,5),rep(15,5)) x2
输出结果
[,1] [,2] [,3] [,4] [,5] [1,] 4 4 4 4 4 [2,] 5 5 5 5 5 [3,] 6 6 6 6 6 [4,] 7 7 7 7 7 [5,] 8 8 8 8 8 [6,] 9 9 9 9 9 [7,] 10 10 10 10 10 [8,] 11 11 11 11 11 [9,] 12 12 12 12 12 [10,] 13 13 13 13 13 [11,] 14 14 14 14 14 [12,] 15 15 15 15 15
x3<−rbind(rep(16,5),rep(17,5),rep(18,5),rep(19,5),rep(20,5),rep(21,5),rep(22,5),rep(23,5),rep(24,5),rep(25,5),rep(26,5),rep(27,5),rep(28,5),rep(29,5),rep(30,5)) x3
输出结果
[,1] [,2] [,3] [,4] [,5] [1,] 16 16 16 16 16 [2,] 17 17 17 17 17 [3,] 18 18 18 18 18 [4,] 19 19 19 19 19 [5,] 20 20 20 20 20 [6,] 21 21 21 21 21 [7,] 22 22 22 22 22 [8,] 23 23 23 23 23 [9,] 24 24 24 24 24 [10,] 25 25 25 25 25 [11,] 26 26 26 26 26 [12,] 27 27 27 27 27 [13,] 28 28 28 28 28 [14,] 29 29 29 29 29 [15,] 30 30 30 30 30
x<−rbind(x1,x2,x3) x
输出结果
[,1] [,2] [,3] [,4] [,5] [1,] 1 1 1 1 1 [2,] 2 2 2 2 2 [3,] 3 3 3 3 3 [4,] 4 4 4 4 4 [5,] 5 5 5 5 5 [6,] 6 6 6 6 6 [7,] 7 7 7 7 7 [8,] 8 8 8 8 8 [9,] 9 9 9 9 9 [10,] 10 10 10 10 10 [11,] 11 11 11 11 11 [12,] 12 12 12 12 12 [13,] 13 13 13 13 13 [14,] 14 14 14 14 14 [15,] 15 15 15 15 15 [16,] 16 16 16 16 16 [17,] 17 17 17 17 17 [18,] 18 18 18 18 18 [19,] 19 19 19 19 19 [20,] 20 20 20 20 20 [21,] 21 21 21 21 21 [22,] 22 22 22 22 22 [23,] 23 23 23 23 23 [24,] 24 24 24 24 24 [25,] 25 25 25 25 25 [26,] 26 26 26 26 26 [27,] 27 27 27 27 27 [28,] 28 28 28 28 28 [29,] 29 29 29 29 29 [30,] 30 30 30 30 30
s1<−rbind(rep("A",10),rep("B",10),rep("C",10),rep("D",10),rep("E",10),rep("F",10),rep("G",10),rep("H",10),rep("I",10),rep("J",10),rep("K",10),rep("L",10),rep("M",10),rep("N",10),rep("O",10)) s1
输出结果
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [1,] "A" "A" "A" "A" "A" "A" "A" "A" "A" "A" [2,] "B" "B" "B" "B" "B" "B" "B" "B" "B" "B" [3,] "C" "C" "C" "C" "C" "C" "C" "C" "C" "C" [4,] "D" "D" "D" "D" "D" "D" "D" "D" "D" "D" [5,] "E" "E" "E" "E" "E" "E" "E" "E" "E" "E" [6,] "F" "F" "F" "F" "F" "F" "F" "F" "F" "F" [7,] "G" "G" "G" "G" "G" "G" "G" "G" "G" "G" [8,] "H" "H" "H" "H" "H" "H" "H" "H" "H" "H" [9,] "I" "I" "I" "I" "I" "I" "I" "I" "I" "I" [10,] "J" "J" "J" "J" "J" "J" "J" "J" "J" "J" [11,] "K" "K" "K" "K" "K" "K" "K" "K" "K" "K" [12,] "L" "L" "L" "L" "L" "L" "L" "L" "L" "L" [13,] "M" "M" "M" "M" "M" "M" "M" "M" "M" "M" [14,] "N" "N" "N" "N" "N" "N" "N" "N" "N" "N" [15,] "O" "O" "O" "O" "O" "O" "O" "O" "O" "O"
s2<−rbind(rep("P",10),rep("Q",10),rep("R",10),rep("S",10),rep("T",10),rep("U",10),rep("V",10),rep("W",10),rep("W",10),rep("Y",10),rep("Z",10)) > s2
输出结果
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [1,] "P" "P" "P" "P" "P" "P" "P" "P" "P" "P" [2,] "Q" "Q" "Q" "Q" "Q" "Q" "Q" "Q" "Q" "Q" [3,] "R" "R" "R" "R" "R" "R" "R" "R" "R" "R" [4,] "S" "S" "S" "S" "S" "S" "S" "S" "S" "S" [5,] "T" "T" "T" "T" "T" "T" "T" "T" "T" "T" [6,] "U" "U" "U" "U" "U" "U" "U" "U" "U" "U" [7,] "V" "V" "V" "V" "V" "V" "V" "V" "V" "V" [8,] "W" "W" "W" "W" "W" "W" "W" "W" "W" "W" [9,] "W" "W" "W" "W" "W" "W" "W" "W" "W" "W" [10,] "Y" "Y" "Y" "Y" "Y" "Y" "Y" "Y" "Y" "Y" [11,] "Z" "Z" "Z" "Z" "Z" "Z" "Z" "Z" "Z" "Z"
S<−rbind(s1,s2) S
输出结果
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [1,] "A" "A" "A" "A" "A" "A" "A" "A" "A" "A" [2,] "B" "B" "B" "B" "B" "B" "B" "B" "B" "B" [3,] "C" "C" "C" "C" "C" "C" "C" "C" "C" "C" [4,] "D" "D" "D" "D" "D" "D" "D" "D" "D" "D" [5,] "E" "E" "E" "E" "E" "E" "E" "E" "E" "E" [6,] "F" "F" "F" "F" "F" "F" "F" "F" "F" "F" [7,] "G" "G" "G" "G" "G" "G" "G" "G" "G" "G" [8,] "H" "H" "H" "H" "H" "H" "H" "H" "H" "H" [9,] "I" "I" "I" "I" "I" "I" "I" "I" "I" "I" [10,] "J" "J" "J" "J" "J" "J" "J" "J" "J" "J" [11,] "K" "K" "K" "K" "K" "K" "K" "K" "K" "K" [12,] "L" "L" "L" "L" "L" "L" "L" "L" "L" "L" [13,] "M" "M" "M" "M" "M" "M" "M" "M" "M" "M" [14,] "N" "N" "N" "N" "N" "N" "N" "N" "N" "N" [15,] "O" "O" "O" "O" "O" "O" "O" "O" "O" "O" [16,] "P" "P" "P" "P" "P" "P" "P" "P" "P" "P" [17,] "Q" "Q" "Q" "Q" "Q" "Q" "Q" "Q" "Q" "Q" [18,] "R" "R" "R" "R" "R" "R" "R" "R" "R" "R" [19,] "S" "S" "S" "S" "S" "S" "S" "S" "S" "S" [20,] "T" "T" "T" "T" "T" "T" "T" "T" "T" "T" [21,] "U" "U" "U" "U" "U" "U" "U" "U" "U" "U" [22,] "V" "V" "V" "V" "V" "V" "V" "V" "V" "V" [23,] "W" "W" "W" "W" "W" "W" "W" "W" "W" "W" [24,] "W" "W" "W" "W" "W" "W" "W" "W" "W" "W" [25,] "Y" "Y" "Y" "Y" "Y" "Y" "Y" "Y" "Y" "Y" [26,] "Z" "Z" "Z" "Z" "Z" "Z" "Z" "Z" "Z" "Z"