很多时候,我们使用一种称为数据平滑的方法来使数据正确和定性,以便进行统计分析。在吸烟过程中,我们定义了一个范围(也称为垃圾箱),该范围内的任何数据值都适合该垃圾箱。这称为合并方法。以下是合并的示例。然后,我们将看到如何使用Python程序实现合并方法。
让我们取一系列数字。找到最大值和最小值。根据分析需要多少个数据点来确定我们需要的箱数。创建这些组并将这些数字中的每一个分配给该组。上面的值被排除,属于下一个组。
Given numbers: 12, 32, 10, 17, 19, 28, 22, 26, 29,16 Number of groups : 4 Here Max Value: 32 Min Value: 10 So the groups are – (10-15), (15-21), (21-27), (27-32)
输出结果
将数字放入垃圾箱后,我们得到以下结果-
12 -> (10-15) 32 -> (27-32) 10 -> (10-15) 17 -> (15-21) 19 -> (15-21) 28 -> (27-32) 22 -> (21-27) 26 -> (21-27) 29 -> (27-32) 16 -> (15-21)
对于此程序,我们定义两个功能。通过定义上限和下限来创建垃圾箱的工具。另一个功能是将输入值分配给每个仓。每个垃圾箱也获得一个索引。我们将看到如何将每个输入值分配给bin,并跟踪将多少个值分配给特定的bin。
from collections import Counter def Binning_method(lower_bound, width, quantity): binning = [] for low in range(lower_bound, lower_bound + quantity * width + 1, width): binning.append((low, low + width)) return binning def bin_assign(v, b): for i in range(0, len(b)): if b[i][0] <= v < b[i][1]: return i the_bins = Binning_method(lower_bound=50, width=4, quantity=10) print("The Bins: \n",the_bins) weights_of_objects = [89.2, 57.2, 63.4, 84.6, 90.2, 60.3,88.7, 65.2, 79.8, 80.2, 93.5, 79.3,72.5, 59.2, 77.2, 67.0, 88.2, 73.5] print("\nBinned Values:\n") binned_weight = [] for val in weights_of_objects: index = bin_assign(val, the_bins) #print(val, index, binning[index]) print(val,"-with index-", index,":", the_bins[index]) binned_weight.append(index) freq = Counter(binned_weight) print("\nCount of values in each index: ") print(freq)
输出结果
运行上面的代码给我们以下结果-
The Bins: [(50, 54), (54, 58), (58, 62), (62, 66), (66, 70), (70, 74), (74, 78), (78, 82), (82, 86), (86, 90), (90, 94)] Binned Values: 89.2 -with index- 9 : (86, 90) 57.2 -with index- 1 : (54, 58) 63.4 -with index- 3 : (62, 66) 84.6 -with index- 8 : (82, 86) 90.2 -with index- 10 : (90, 94) 60.3 -with index- 2 : (58, 62) 88.7 -with index- 9 : (86, 90) 65.2 -with index- 3 : (62, 66) 79.8 -with index- 7 : (78, 82) 80.2 -with index- 7 : (78, 82) 93.5 -with index- 10 : (90, 94) 79.3 -with index- 7 : (78, 82) 72.5 -with index- 5 : (70, 74) 59.2 -with index- 2 : (58, 62) 77.2 -with index- 6 : (74, 78) 67.0 -with index- 4 : (66, 70) 88.2 -with index- 9 : (86, 90) 73.5 -with index- 5 : (70, 74) Count of values in each index: Counter({9: 3, 7: 3, 3: 2, 10: 2, 2: 2, 5: 2, 1: 1, 8: 1, 6: 1, 4: 1})