在本教程中,我们将讨论在给定的二叉树中打印从叶节点到另一个叶节点的最长路径的程序。
换句话说,我们必须打印出现在二叉树直径中的所有节点。此处,特定二叉树的直径(或宽度)定义为从一个端节点到另一端节点的最长路径中的节点数。
为了解决这个问题,我们使用高度函数计算二叉树的直径。然后,我们在二叉树的左侧和右侧找到最长的路径。然后最后要打印直径的节点,我们先打印左部分节点,根节点,然后再打印右部分节点。
#include <bits/stdc++.h> using namespace std; struct Node { int data; Node *left, *right; }; struct Node* create_node(int data){ struct Node* node = new Node; node->data = data; node->left = node->right = NULL; return (node); } int tree_height(Node* root, int& ans, Node*(&k), int& lh, int& rh, int& f){ if (root == NULL) return 0; int left_tree_height = tree_height(root->left, ans, k, lh, rh, f); int right_tree_height = tree_height(root->right, ans, k, lh, rh, f); if (ans < 1 + left_tree_height + right_tree_height){ ans = 1 + left_tree_height + right_tree_height; k = root; lh = left_tree_height; rh = right_tree_height; } return 1 + max(left_tree_height, right_tree_height); } void print_roottonode(int ints[], int len, int f){ int i; if (f == 0){ for (i = len - 1; i >= 0; i--) { printf("%d ", ints[i]); } } else if (f == 1) { for (i = 0; i < len; i++) { printf("%d ", ints[i]); } } } void print_pathr(Node* node, int path[], int pathLen, int max, int& f){ if (node == NULL) return; path[pathLen] = node->data; pathLen++; if (node->left == NULL && node->right == NULL) { if (pathLen == max && (f == 0 || f == 1)) { print_roottonode(path, pathLen, f); f = 2; } } else { print_pathr(node->left, path, pathLen, max, f); print_pathr(node->right, path, pathLen, max, f); } } void calc_diameter(Node* root){ if (root == NULL) return; int ans = INT_MIN, lh = 0, rh = 0; int f = 0; Node* k; int tree_height_of_tree = tree_height(root, ans, k, lh, rh, f); int lPath[100], pathlen = 0; print_pathr(k->left, lPath, pathlen, lh, f); printf("%d ", k->data); int rPath[100]; f = 1; print_pathr(k->right, rPath, pathlen, rh, f); } int main(){ struct Node* root = create_node(12); root->left = create_node(22); root->right = create_node(33); root->left->left = create_node(45); root->left->right = create_node(57); root->left->right->left = create_node(26); root->left->right->right = create_node(76); root->left->left->right = create_node(84); root->left->left->right->left = create_node(97); calc_diameter(root); return 0; }
输出结果
97 84 45 22 57 26