假设我们有一条类似y = x(A-x)的曲线,我们必须找到该曲线上给定点(x,y)的法线。这里A是整数,x和y也是整数。
为了解决这个问题,我们检查给定点是否在曲线上,如果是,则找到该曲线的微分,因此将是-
$$\ frac {\ text {d} y} {\ text {d} x} = A-2x $$
然后将x和y放入dy / dx,然后使用该方程式找到法线-
$$Yy =-\ lgroup \ frac {\ text {d} x} {\ text {d} y} \ rgroup * \ lgroup Xx \ rgroup $$
#include<iostream> using namespace std; void getNormal(int A, int x, int y) { int differentiation = A - x * 2; if (y == (2 * x - x * x)) { if (differentiation < 0) cout << 0 - differentiation << "y = " << "x" << (0 - x) + (y * differentiation); else if (differentiation > 0) cout << differentiation << "y = " << "-x+" << x + differentiation * y; else cout << "x = " << x; } else cout << "Not possible"; } int main() { int A = 5, x = 2, y = 0; cout << "Equation of normal is: "; getNormal(A, x, y); }
输出结果
Equation of normal is: 1y = -x+2