方阵的行列式可以使用其元素值来计算。矩阵A的行列式可以表示为det(A),并且可以称为矩阵在几何形状中描述的线性变换的比例因子。
矩阵的行列式的示例如下。
The matrix is: 3 1 2 7 The determinant of the above matrix = 7*3 - 2*1 = 21 - 2 = 19 So, the determinant is 19.
计算矩阵行列式的程序如下。
#include<iostream> #include<math.h> using namespace std; int determinant( int matrix[10][10], int n) { int det = 0; int submatrix[10][10]; if (n == 2) return ((matrix[0][0] * matrix[1][1]) - (matrix[1][0] * matrix[0][1])); else { for (int x = 0; x < n; x++) { int subi = 0; for (int i = 1; i < n; i++) { int subj = 0; for (int j = 0; j < n; j++) { if (j == x) continue; submatrix[subi][subj] = matrix[i][j]; subj++; } subi++; } det = det + (pow(-1, x) * matrix[0][x] * determinant( submatrix, n - 1 )); } } return det; } int main() { int n, i, j; int matrix[10][10]; cout << "Enter the size of the matrix:\n"; cin >> n; cout << "Enter the elements of the matrix:\n"; for (i = 0; i < n; i++) for (j = 0; j < n; j++) cin >> matrix[i][j]; cout<<"输入的矩阵为:"<<endl; for (i = 0; i < n; i++) { for (j = 0; j < n; j++) cout << matrix[i][j] <<" "; cout<<endl; } cout<<"Determinant of the matrix is "<< determinant(matrix, n); return 0; }
输出结果
Enter the size of the matrix: 3 Enter the elements of the matrix: 7 1 3 2 4 1 1 5 1 输入的矩阵为: 7 1 3 2 4 1 1 5 1 Determinant of the matrix is 10
在以上程序中,矩阵的大小和元素在main()
函数中提供。然后determinant()
调用该函数。它返回所显示矩阵的行列式。下面的代码段对此进行了演示。
cout << "Enter the size of the matrix:\n"; cin >> n; cout <<"Enter the elements of the matrix:\n"; for (i = 0; i < n; i++) for (j = 0; j < n; j++) cin >> matrix[i][j]; cout<<"输入的矩阵为:"<<endl; for (i = 0; i < n; i++) { for (j = 0; j < n; j++) cout << matrix[i][j] <<" "; cout<<endl; } cout<<"Determinant of the matrix is "<< determinant(matrix, n);
在函数中determinant()
,如果矩阵的大小为2,则直接计算行列式并返回值。如下所示。
if (n == 2) return ((matrix[0][0] * matrix[1][1]) - (matrix[1][0] * matrix[0][1]));
如果矩阵的大小不是2,则行列式被递归计算。有3个嵌套的for循环与循环变量x,i和j一起使用。这些循环用于计算determinant()
行列式,然后递归调用该函数以计算内部行列式,然后将其与外部值相乘。下面的代码片段对此进行了演示。
for (int x = 0; x < n; x++) { int subi = 0; for (int i = 1; i < n; i++) { int subj = 0; for (int j = 0; j < n; j++) { if (j == x) continue; submatrix[subi][subj] = matrix[i][j]; subj++; } subi++; } det = det + (pow(-1, x) * matrix[0][x] * determinant( submatrix, n - 1 )); }