给定矩阵为mat [row] [column],我们的任务是通过函数检查给定矩阵是否为奇数并显示结果。
奇异矩阵是行列式为零的矩阵,如果行列式不为零,则矩阵是非奇异的。
因此,要确定矩阵是奇异的还是非奇异的,我们需要先计算行列式。矩阵的行列式可以计算为-
$$M1 [3] [3] \:= \:\ begin {bmatrix} a&b&c \\ d&e&f \\ g&h&i \ end {bmatrix} $$
| m1 | = a(e * i-f * h)-b(d * i-f * g)+ c(d * h-e * g)
Input-: mat[3][3]= { 4, 10, 1 }, { 0, 2, 3 }, { 1, 4, -3 } Output-: matrix is non-singular Input-: mat[3][3]= { 0, 0, 0 }, { 10, 20, 30 }, { 1, 4, -3 } Output-: matrix is singular Since the entire first row is 0 the determinant will be zero only
Start In function cofactor(int matrix[N][N], int matrix2[N][N], int p, int q, int n) { Step 1-> Declare and initialize i = 0, j = 0, row, col Step 2-> Loop For row = 0 and row < n and row++ Loop For col = 0 and col < n and col++ If row != p && col != q then, Set matrix2[i][j++] as matrix[row][col] If j == n – 1 then, Set j = 0 Increment i by 1 End for End for In function int check_singular(int matrix[N][N], int n) Step 1-> Declare and initialize int D = 0; Step 2-> If n == 1 then, Return matrix[0][0] Step 3-> Declare matrix2[N][N], sign = 1 Step 4-> Loop For f = 0 and f < n and f++ Call function cofactor(matrix, matrix2, 0, f, n) Set D += sign * matrix[0][f] * check_singular(matrix2, n - 1) Set sign = -sign End loop Step 5-> Return D In main() Step 1-> Declare and initialize a matrix[N][N] Step 2-> If call check_singular(matrix, N) returns non 0 value then, Print "Matrix is Singular " Step 3-> Else Print "Matrix is non-Singular " Stop
#include <stdio.h> #define N 4 //找到辅因子 int cofactor(int matrix[N][N], int matrix2[N][N], int p, int q, int n) { int i = 0, j = 0; int row, col; //为矩阵的每个元素循环 for (row = 0; row < n; row++) { for (col = 0; col < n; col++) { //仅复制到临时矩阵 //那些没有给出的元素 //行和列 if (row != p && col != q) { matrix2[i][j++] = matrix[row][col]; //行已填充,因此增加行 //索引并重置列索引 if (j == n - 1) { j = 0; i++; } } } } return 0; } /* Recursive function to check if matrix[][] is singular or not. */ int check_singular(int matrix[N][N], int n) { int D = 0; // Initialize result //基本情况:如果矩阵包含单个元素 if (n == 1) return matrix[0][0]; int matrix2[N][N]; // To store cofactors int sign = 1; // To store sign multiplier //对第一行的每个元素进行迭代 for (int f = 0; f < n; f++) { //获取矩阵的辅因子[0] [f] cofactor(matrix, matrix2, 0, f, n); D += sign * matrix[0][f] * check_singular(matrix2, n - 1); //术语应添加备用符号 sign = -sign; } return D; } //驱动程序测试以上功能 int main() { int matrix[N][N] = { { 4, 10, 1 }, { 0, 2, 3 }, { 1, 4, -3 } }; if (check_singular(matrix, N)) printf("Matrix is Singular\n"); else printf("Matrix is non-Singular\n"); return 0; }
输出结果
如果运行上面的代码,它将生成以下输出-
Matrix is non-Singular