pandas中的DataFrame中可以根据某个属性的同一值进行聚合分组,可以选单个属性,也可以选多个属性:
代码示例:
import pandas as pd A=pd.DataFrame([['Beijing',1.68,2300,'city','Yes'],['Tianjin',1.13,1293,'city','Yes'],['Shaanxi',20.56,3732,'Province','Yes'],['Hebei',18.77,7185,'Province','No'],['Qinghai',72,560,'Province','No']],columns=['Name','Area','Population','Administrative_level','Have 985']) for name,group in A.groupby('Administrative_level'): print(name) print(group) for name,group in A.groupby(['Administrative_level','Have 985']): print(name) print(group)
先产生一个dataframe,如表所示
Name | Area | Population | Administrative_level | Have 985 |
Beijing | 1.68 | 2300 | city | Yes |
Tianjin | 1.13 | 1293 | city | Yes |
Shaanxi | 20.56 | 3732 | Province | Yes |
Hebei | 18.77 | 7185 | Province | No |
Qinghai | 72 | 560 | Province | No |
先按照行政级别一个属性划分,再按照行政级别和是否有985高校两个属性划分,结果如下:
总结
以上所述是小编给大家介绍的Python中的groupby分组功能的实例代码,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对呐喊教程网站的支持!
声明:本文内容来源于网络,版权归原作者所有,内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:notice#nhooo.com(发邮件时,请将#更换为@)进行举报,并提供相关证据,一经查实,本站将立刻删除涉嫌侵权内容。