pandas object格式转float64格式的方法

在数据处理过程中

比如从CSV文件中导入数据

data_df = pd.read_csv("names.csv")

在处理之前一定要查看数据的类型

data_df.info()
*RangeIndex: 891 entries, 0 to 890 
Data columns (total 12 columns): 
Name 891 non-null object 
Sex 891 non-null object 
Age 714 non-null float64 
SibSp 891 non-null int64 
Parch 891 non-null int64 
Ticket 891 non-null object 
Fare 891 non-null float64 
Cabin 204 non-null object 
Embarked 889 non-null object 
dtypes: float64(2), int64(5), object(5) 
memory usage: 83.6+ KB* 

以上object , int64, 以及 float64 便是数据的类型。

如果我们需要对列数据进行相互之间的运算的吧,必须注意的一点是:

两列的数据类型是否是相同的!!

如果一个object类型与int64的类型相加,便会发生错误

错误提示可能如下:

TypeError: ufunc 'add' not contain a loop with signature matching types dtype('<U32') dtype('<U32') dtype('<U32')

此时的object类型可能是‘12.3'这样str格式的数字,如果要运算必须进行格式转换:

可采用如下方法(convert_objects):

dt_df = dt_df.convert_objects(convert_numeric=True)

亲测有效。

再提醒一遍!得到数据一定要先查看数据类型!!!

以上这篇pandas object格式转float64格式的方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持呐喊教程。

声明:本文内容来源于网络,版权归原作者所有,内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:notice#nhooo.com(发邮件时,请将#更换为@)进行举报,并提供相关证据,一经查实,本站将立刻删除涉嫌侵权内容。