在pandas中一次性删除dataframe的多个列方法

之前沉迷于使用index删除,然而发现pandas貌似有bug?

import pandas as pd
import numpy as np
df = pd.DataFrame(np.arange(12).reshape(3,4),
           columns=['A', 'B', 'C', 'D'])
x=[1,2]
df.drop(index=[1,2], axis=1, inplace=True) #axis=1,试图指定列,然并卵
print df

输出为

  A B C D
0 0 1 2 3  还是按照行进行了删除

后来请教大神得知,可以用:

df.drop(df.columns[x], axis=1, inplace=True) 的方法。

即:

import pandas as pd
import numpy as np
df = pd.DataFrame(np.arange(12).reshape(3,4),
           columns=['A', 'B', 'C', 'D'])
x=[1,2]
df.drop(df.columns[x], axis=1, inplace=True)
print df

的方法删除。输出结果符合预期。

以上这篇在pandas中一次性删除dataframe的多个列方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持呐喊教程。

声明:本文内容来源于网络,版权归原作者所有,内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:notice#nhooo.com(发邮件时,请将#更换为@)进行举报,并提供相关证据,一经查实,本站将立刻删除涉嫌侵权内容。