Python+PIL实现支付宝AR红包

本文实例为大家分享了Python+PIL处理支付宝AR红包的具体代码,供大家参考,具体内容如下

思路比较简单:

1、对图片进行锐化处理;
2、设(r_h, g_h, b_h)为支付宝遮罩黑条的RGB值,以此为中心,查找半径为Diff_radius的范围内所有的色值;

3、对每一行符合步骤2的像素点个数进行计数,若该数值超过某个临界值(如:图片宽度的一半),将其所在行替换为上一行非遮罩数据;
4、对处理后的图片高斯滤镜。

以下是python代码:

from PIL import Image,ImageFilter
 
Diff_radius = 500
diff_min = 1
r_h, g_h, b_h = 43, 55, 66
 
image = Image.open('test.png')
image_width = image.size[0]
image_height = image.size[1]
rgb_im = image.convert('RGB')
 
img_sharpen = image.filter(ImageFilter.SHARPEN)
 
img_new = Image.new('RGBA', image.size, (255,255,255,255))
img_copy = img_sharpen.crop((0,0,image_width,image_height))
img_new.paste(img_copy, (0,0,image_width,image_height))
 
y_tmp = 0
 
for y in range(image_height):
  y_is_black = 0
  current_line_flag_acc = 0
  for x in range(image_width):
    r, g, b = rgb_im.getpixel((x, y))
    if ((r_h-r)**2 + (g_h-g)**2 + (b_h-b)**2) < Diff_radius :
      current_line_flag_acc = current_line_flag_acc + 1
      if (x == image_width - 1) and (current_line_flag_acc > diff_min) :
        y_is_black = 1
        img1 = img_new.crop((0,y_tmp-2,image_width,y_tmp-1))
        img_new.paste(img1, (0,y,image_width,y+1))
        # print('y_tmp:%d -> y:%d'%(y_tmp,y))
    elif (x == image_width - 1) and not y_is_black:
      y_tmp = y
# img_save = img_new.filter(ImageFilter.GaussianBlur(radius=1.5))
img_new.save('test_1.png')
print("done!")

对于不同的图片,可能需要修改3、4、5行的参数。

目前测试过几组照片,发现给出的线索图片越复杂,这种方法处理后能被识别的成功率越高,尤其是对人脸,简单的处理后基本都可以识别。

识别成功的:

识别失败的:

以上内容仅用作学习,起到抛砖引玉的作用,请不要用作其他用途。我只是个python和PIL的初学者。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持呐喊教程。

声明:本文内容来源于网络,版权归原作者所有,内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:notice#nhooo.com(发邮件时,请将#更换为@)进行举报,并提供相关证据,一经查实,本站将立刻删除涉嫌侵权内容。