前言
说到运算符重载相信大家都不陌生,运算符重载的作用是让用户定义的对象使用中缀运算符(如 + 和 |)或一元运算符(如 - 和 ~)。说得宽泛一些,在 Python 中,函数调用(())、属性访问(.)和元素访问 / 切片([])也是运算符。
我们为 Vector 类简略实现了几个运算符。__add__ 和 __mul__ 方法是为了展示如何使用特殊方法重载运算符,不过有些小问题被我们忽视了。此外,我们定义的Vector2d.__eq__ 方法认为 Vector(3, 4) == [3, 4] 是真的(True),这可能并不合理。下面来一起看看详细的介绍吧。
运算符重载基础
在某些圈子中,运算符重载的名声并不好。这个语言特性可能(已经)被滥用,让程序员困惑,导致缺陷和意料之外的性能瓶颈。但是,如果使用得当,API 会变得好用,代码会变得易于阅读。Python 施加了一些限制,做好了灵活性、可用性和安全性方面的平衡:
前面的博文已经为 Vector 定义了一个中缀运算符,即 ==,这个运算符由__eq__ 方法支持。我们将改进 __eq__ 方法的实现,更好地处理不是Vector 实例的操作数。然而,在运算符重载方面,众多比较运算符(==、!=、>、<、>=、<=)是特例,因此我们首先将在 Vector 中重载四个算术运算符:一元运算符 - 和 +,以及中缀运算符 + 和 *。
一元运算符
-(__neg__)
一元取负算术运算符。如果 x 是 -2,那么 -x == 2。
+(__pos__)
一元取正算术运算符。通常,x == +x,但也有一些例外。如果好奇,请阅读“x 和 +x 何时不相等”附注栏。
~(__invert__)
对整数按位取反,定义为 ~x == -(x+1)。如果 x 是 2,那么 ~x== -3。
支持一元运算符很简单,只需实现相应的特殊方法。这些特殊方法只有一个参数,self。然后,使用符合所在类的逻辑实现。不过,要遵守运算符的一个基本规则:始终返回一个新对象。也就是说,不能修改self,要创建并返回合适类型的新实例。
对 - 和 + 来说,结果可能是与 self 同属一类的实例。多数时候,+ 最好返回 self 的副本。abs(...) 的结果应该是一个标量。但是对 ~ 来说,很难说什么结果是合理的,因为可能不是处理整数的位,例如在ORM 中,SQL WHERE 子句应该返回反集。
def __abs__(self): return math.sqrt(sum(x * x for x in self)) def __neg__(self): return Vector(-x for x in self) #为了计算 -v,构建一个新 Vector 实例,把 self 的每个分量都取反 def __pos__(self): return Vector(self) #为了计算 +v,构建一个新 Vector 实例,传入 self 的各个分量
x 和 +x 何时不相等
每个人都觉得 x == +x,而且在 Python 中,几乎所有情况下都是这样。但是,我在标准库中找到两例 x != +x 的情况。
第一例与 decimal.Decimal 类有关。如果 x 是 Decimal 实例,在算术运算的上下文中创建,然后在不同的上下文中计算 +x,那么 x!= +x。例如,x 所在的上下文使用某个精度,而计算 +x 时,精度变了,例如下面的 🌰
算术运算上下文的精度变化可能导致 x 不等于 +x
>>> import decimal >>> ctx = decimal.getcontext() #获取当前全局算术运算符的上下文引用 >>> ctx.prec = 40 #把算术运算上下文的精度设为40 >>> one_third = decimal.Decimal('1') / decimal.Decimal('3') #使用当前精度计算1/3 >>> one_third Decimal('0.3333333333333333333333333333333333333333') #查看结果,小数点后的40个数字 >>> one_third == +one_third #one_third = +one_thied返回TRUE True >>> ctx.prec = 28 #把精度降为28 >>> one_third == +one_third #one_third = +one_thied返回FalseFalse >>> +one_third Decimal('0.3333333333333333333333333333') #查看+one_third,小术后的28位数字
虽然每个 +one_third 表达式都会使用 one_third 的值创建一个新 Decimal 实例,但是会使用当前算术运算上下文的精度。
x != +x 的第二例在 collections.Counter 的文档中(https://docs.python.org/3/library/collections.html#collections.Counter)。类实现了几个算术运算符,例如中缀运算符 +,作用是把两个Counter 实例的计数器加在一起。然而,从实用角度出发,Counter 相加时,负值和零值计数会从结果中剔除。而一元运算符 + 等同于加上一个空 Counter,因此它产生一个新的Counter 且仅保留大于零的计数器。
🌰 一元运算符 + 得到一个新 Counter 实例,但是没有零值和负值计数器
>>> from collections import Counter >>> ct = Counter('abracadabra') >>> ct['r'] = -3 >>> ct['d'] = 0 >>> ct Counter({'a': 5, 'r': -3, 'b': 2, 'c': 1, 'd': 0}) >>> +ct Counter({'a': 5, 'b': 2, 'c': 1})
重载向量加法运算符+
两个欧几里得向量加在一起得到的是一个新向量,它的各个分量是两个向量中相应的分量之和。比如说:
>>> v1 = Vector([3, 4, 5]) >>> v2 = Vector([6, 7, 8]) >>> v1 + v2 Vector([9.0, 11.0, 13.0]) >>> v1 + v2 == Vector([3+6, 4+7, 5+8]) True
确定这些基本的要求之后,__add__ 方法的实现短小精悍,🌰 如下
def __add__(self, other): pairs = itertools.zip_longest(self, other, fillvalue=0.0) #生成一个元祖,a来自self,b来自other,如果两个长度不够,通过fillvalue设置的补全值自动补全短的 return Vector(a + b for a, b in pairs) #使用生成器表达式计算pairs中的各个元素的和
还可以把Vector 加到元组或任何生成数字的可迭代对象上:
# 在Vector类中定义 def __add__(self, other): pairs = itertools.zip_longest(self, other, fillvalue=0.0) #生成一个元祖,a来自self,b来自other,如果两个长度不够,通过fillvalue设置的补全值自动补全短的 return Vector(a + b for a, b in pairs) #使用生成器表达式计算pairs中的各个元素的和 def __radd__(self, other): #会直接委托给__add__ return self + other
__radd__ 通常就这么简单:直接调用适当的运算符,在这里就是委托__add__。任何可交换的运算符都能这么做。处理数字和向量时,+ 可以交换,但是拼接序列时不行。
重载标量乘法运算符*
Vector([1, 2, 3]) * x 是什么意思?如果 x 是数字,就是计算标量积(scalar product),结果是一个新 Vector 实例,各个分量都会乘以x——这也叫元素级乘法(elementwise multiplication)。
>>> v1 = Vector([1, 2, 3]) >>> v1 * 10 Vector([10.0, 20.0, 30.0]) >>> 11 * v1 Vector([11.0, 22.0, 33.0])
涉及 Vector 操作数的积还有一种,叫两个向量的点积(dotproduct);如果把一个向量看作 1×N 矩阵,把另一个向量看作 N×1 矩阵,那么就是矩阵乘法。NumPy 等库目前的做法是,不重载这两种意义的 *,只用 * 计算标量积。例如,在 NumPy 中,点积使用numpy.dot() 函数计算。
回到标量积的话题。我们依然先实现最简可用的 __mul__ 和 __rmul__方法:
def __mul__(self, scalar): if isinstance(scalar, numbers.Real): return Vector(n * scalar for n in self) else: return NotImplemented def __rmul__(self, scalar): return self * scalar
这两个方法确实可用,但是提供不兼容的操作数时会出问题。scalar参数的值要是数字,与浮点数相乘得到的积是另一个浮点数(因为Vector 类在内部使用浮点数数组)。因此,不能使用复数,但可以是int、bool(int 的子类),甚至 fractions.Fraction 实例等标量。
提供了点积所需的 @ 记号(例如,a @ b 是 a 和 b 的点积)。@ 运算符由特殊方法 __matmul__、__rmatmul__ 和__imatmul__ 提供支持,名称取自“matrix multiplication”(矩阵乘法)
>>> va = Vector([1, 2, 3]) >>> vz = Vector([5, 6, 7]) >>> va @ vz == 38.0 # 1*5 + 2*6 + 3*7 True >>> [10, 20, 30] @ vz 380.0 >>> va @ 3 Traceback (most recent call last): ... TypeError: unsupported operand type(s) for @: 'Vector' and 'int'
下面是相应特殊方法的代码:
>>> va = Vector([1, 2, 3]) >>> vz = Vector([5, 6, 7]) >>> va @ vz == 38.0 # 1*5 + 2*6 + 3*7 True >>> [10, 20, 30] @ vz 380.0 >>> va @ 3 Traceback (most recent call last): ... TypeError: unsupported operand type(s) for @: 'Vector' and 'int'
众多比较运算符
Python 解释器对众多比较运算符(==、!=、>、<、>=、<=)的处理与前文类似,不过在两个方面有重大区别。
众多比较运算符:正向方法返回NotImplemented的话,调用反向方法
|
中缀运算符 |
正向方法调用 |
反向方法调用 |
后备机制 |
相等性 |
a == b |
a.__eq__(b) |
b.__eq__(a) |
返回 id(a) == id(b) |
|
a != b |
a.__ne__(b) |
b.__ne__(a) |
返回 not (a == b) |
排序 |
a > b |
a.__gt__(b) |
b.__lt__(a) |
抛出 TypeError |
|
a < b |
a.__lt__(b) |
b.__gt__(a) |
抛出 TypeError |
|
a >= b |
a.__ge__(b) |
b.__le__(a) |
抛出 TypeError |
|
a <= b |
a.__le__(b) |
b.__ge__(a) |
抛出T ypeError |
看下面的🌰
from array import array import reprlib import math import numbers import functools import operator import itertools class Vector: typecode = 'd' def __init__(self, components): self._components = array(self.typecode, components) def __iter__(self): return iter(self._components) def __repr__(self): components = reprlib.repr(self._components) components = components[components.find('['):-1] return 'Vector({})'.format(components) def __str__(self): return str(tuple(self)) def __bytes__(self): return (bytes([ord(self.typecode)]) + bytes(self._components)) def __eq__(self, other): return (len(self) == len(other) and all(a == b for a, b in zip(self, other))) def __hash__(self): hashes = map(hash, self._components) return functools.reduce(operator.xor, hashes, 0) def __add__(self, other): pairs = itertools.zip_longest(self, other, fillvalue=0.0) #生成一个元祖,a来自self,b来自other,如果两个长度不够,通过fillvalue设置的补全值自动补全短的 return Vector(a + b for a, b in pairs) #使用生成器表达式计算pairs中的各个元素的和 def __radd__(self, other): #会直接委托给__add__ return self + other def __mul__(self, scalar): if isinstance(scalar, numbers.Real): return Vector(n * scalar for n in self) else: return NotImplemented def __rmul__(self, scalar): return self * scalar def __matmul__(self, other): try: return sum(a * b for a, b in zip(self, other)) except TypeError: return NotImplemented def __rmatmul__(self, other): return self @ other def __abs__(self): return math.sqrt(sum(x * x for x in self)) def __neg__(self): return Vector(-x for x in self) #为了计算 -v,构建一个新 Vector 实例,把 self 的每个分量都取反 def __pos__(self): return Vector(self) #为了计算 +v,构建一个新 Vector 实例,传入 self 的各个分量 def __bool__(self): return bool(abs(self)) def __len__(self): return len(self._components) def __getitem__(self, index): cls = type(self) if isinstance(index, slice): return cls(self._components[index]) elif isinstance(index, numbers.Integral): return self._components[index] else: msg = '{.__name__} indices must be integers' raise TypeError(msg.format(cls)) shorcut_names = 'xyzt' def __getattr__(self, name): cls = type(self) if len(name) == 1: pos = cls.shorcut_names.find(name) if 0 <= pos < len(self._components): return self._components[pos] msg = '{.__name__!r} object has no attribute {!r}' raise AttributeError(msg.format(cls, name)) def angle(self, n): r = math.sqrt(sum(x * x for x in self[n:])) a = math.atan2(r, self[n-1]) if (n == len(self) - 1 ) and (self[-1] < 0): return math.pi * 2 - a else: return a def angles(self): return (self.angle(n) for n in range(1, len(self))) def __format__(self, fmt_spec=''): if fmt_spec.endswith('h'): fmt_spec = fmt_spec[:-1] coords = itertools.chain([abs(self)], self.angles()) outer_fmt = '<{}>' else: coords = self outer_fmt = '({})' components = (format(c, fmt_spec) for c in coords) return outer_fmt.format(', '.join(components)) @classmethod def frombytes(cls, octets): typecode = chr(octets[0]) memv = memoryview(octets[1:]).cast(typecode) return cls(memv) va = Vector([1.0, 2.0, 3.0]) vb = Vector(range(1, 4)) print('va == vb:', va == vb) #两个具有相同数值分量的 Vector 实例是相等的 t3 = (1, 2, 3) print('va == t3:', va == t3) print('[1, 2] == (1, 2):', [1, 2] == (1, 2))
上面代码执行返回的结果为:
va == vb: True va == t3: True [1, 2] == (1, 2): False
从 Python 自身来找线索,我们发现 [1,2] == (1, 2) 的结果是False。因此,我们要保守一点,做些类型检查。如果第二个操作数是Vector 实例(或者 Vector 子类的实例),那么就使用 __eq__ 方法的当前逻辑。否则,返回 NotImplemented,让 Python 处理。
🌰 vector_v8.py:改进 Vector 类的 __eq__ 方法
def __eq__(self, other): if isinstance(other, Vector): #判断对比的是否和Vector同属一个实例 return (len(self) == len(other) and all(a == b for a, b in zip(self, other))) else: return NotImplemented #否则,返回NotImplemented
改进以后的代码执行结果:
>>> va = Vector([1.0, 2.0, 3.0]) >>> vb = Vector(range(1, 4)) >>> va == vb True >>> t3 = (1, 2, 3) >>> va == t3 False
增量赋值运算符
Vector 类已经支持增量赋值运算符 += 和 *= 了,示例如下
🌰 增量赋值不会修改不可变目标,而是新建实例,然后重新绑定
>>> v1 = Vector([1, 2, 3]) >>> v1_alias = v1 # 复制一份,供后面审查Vector([1, 2, 3])对象 >>> id(v1) # 记住一开始绑定给v1的Vector实例的ID >>> v1 += Vector([4, 5, 6]) # 增量加法运算 >>> v1 # 结果与预期相符 Vector([5.0, 7.0, 9.0]) >>> id(v1) # 但是创建了新的Vector实例 >>> v1_alias # 审查v1_alias,确认原来的Vector实例没被修改 Vector([1.0, 2.0, 3.0]) >>> v1 *= 11 # 增量乘法运算 >>> v1 # 同样,结果与预期相符,但是创建了新的Vector实例 Vector([55.0, 77.0, 99.0]) >>> id(v1)
完整代码:
from array import array import reprlib import math import numbers import functools import operator import itertools class Vector: typecode = 'd' def __init__(self, components): self._components = array(self.typecode, components) def __iter__(self): return iter(self._components) def __repr__(self): components = reprlib.repr(self._components) components = components[components.find('['):-1] return 'Vector({})'.format(components) def __str__(self): return str(tuple(self)) def __bytes__(self): return (bytes([ord(self.typecode)]) + bytes(self._components)) def __eq__(self, other): if isinstance(other, Vector): return (len(self) == len(other) and all(a == b for a, b in zip(self, other))) else: return NotImplemented def __hash__(self): hashes = map(hash, self._components) return functools.reduce(operator.xor, hashes, 0) def __add__(self, other): pairs = itertools.zip_longest(self, other, fillvalue=0.0) return Vector(a + b for a, b in pairs) def __radd__(self, other): return self + other def __mul__(self, scalar): if isinstance(scalar, numbers.Real): return Vector(n * scalar for n in self) else: return NotImplemented def __rmul__(self, scalar): return self * scalar def __matmul__(self, other): try: return sum(a * b for a, b in zip(self, other)) except TypeError: return NotImplemented def __rmatmul__(self, other): return self @ other def __abs__(self): return math.sqrt(sum(x * x for x in self)) def __neg__(self): return Vector(-x for x in self) def __pos__(self): return Vector(self) def __bool__(self): return bool(abs(self)) def __len__(self): return len(self._components) def __getitem__(self, index): cls = type(self) if isinstance(index, slice): return cls(self._components[index]) elif isinstance(index, numbers.Integral): return self._components[index] else: msg = '{.__name__} indices must be integers' raise TypeError(msg.format(cls)) shorcut_names = 'xyzt' def __getattr__(self, name): cls = type(self) if len(name) == 1: pos = cls.shorcut_names.find(name) if 0 <= pos < len(self._components): return self._components[pos] msg = '{.__name__!r} object has no attribute {!r}' raise AttributeError(msg.format(cls, name)) def angle(self, n): r = math.sqrt(sum(x * x for x in self[n:])) a = math.atan2(r, self[n-1]) if (n == len(self) - 1 ) and (self[-1] < 0): return math.pi * 2 - a else: return a def angles(self): return (self.angle(n) for n in range(1, len(self))) def __format__(self, fmt_spec=''): if fmt_spec.endswith('h'): fmt_spec = fmt_spec[:-1] coords = itertools.chain([abs(self)], self.angles()) outer_fmt = '<{}>' else: coords = self outer_fmt = '({})' components = (format(c, fmt_spec) for c in coords) return outer_fmt.format(', '.join(components)) @classmethod def frombytes(cls, octets): typecode = chr(octets[0]) memv = memoryview(octets[1:]).cast(typecode) return cls(memv)
总结
以上就是这篇文章的全部内容了,希望本文的内容对大家的学习或者工作能带来一定的帮助,如果有疑问大家可以留言交流,谢谢大家对呐喊教程的支持。
声明:本文内容来源于网络,版权归原作者所有,内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:notice#nhooo.com(发邮件时,请将#更换为@)进行举报,并提供相关证据,一经查实,本站将立刻删除涉嫌侵权内容。