本文实例讲述了Python基于分水岭算法解决走迷宫游戏。分享给大家供大家参考,具体如下:
#Solving maze with morphological transformation """ usage:Solving maze with morphological transformation needed module:cv2/numpy/sys ref: 1.http://www.mazegenerator.net/ 2.http://blog.leanote.com/post/leeyoung/539a629aab35bc44e2000000 @author:Robin Chen """ import cv2 import numpy as np import sys def SolvingMaze(image): #load an image try: img = cv2.imread(image) except Exception,e: print 'Error:can not open the image!' sys.exit() #show image #cv2.namedWindow('image', cv2.WINDOW_NORMAL) cv2.imshow('maze_image',img) #convert to gray gray_image = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) #show gray image #cv2.imshow('gray_image',gray_image) #convert to binary image retval,binary_image = cv2.threshold(gray_image, 10,255, cv2.THRESH_BINARY_INV) #cv2.imshow('binary_image',binary_image) contours,hierarchy = cv2.findContours(binary_image, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE) if len(contours) != 2: sys.exit("This is not a 'perfect maze' with just 2 walls!") h, w, d = img.shape #The first wall path = np.zeros((h,w),dtype = np.uint8)#cv2.CV_8UC1 cv2.drawContours(path, contours, 0, (255,255,255),-1)#cv2.FILLED #cv2.imshow('The first wall',path) #Dilate the wall by a few pixels kernel = np.ones((19, 19), dtype = np.uint8) path = cv2.dilate(path, kernel) #cv2.imshow('Dilate the wall by a few pixels',path) #Erode by the same amount of pixels path_erode = cv2.erode(path, kernel); #cv2.imshow('Erode by the same amount of pixels',path_erode) #absdiff path = cv2.absdiff(path, path_erode); #cv2.imshow('absdiff',path) #solution channels = cv2.split(img); channels[0] &= ~path; channels[1] &= ~path; channels[2] |= path; dst = cv2.merge(channels); cv2.imshow("solution", dst); #waiting for any key to close windows cv2.waitKey(0) cv2.destroyAllWindows() if __name__ == '__main__': image = sys.argv[-1] SolvingMaze(image)
更多关于Python相关内容可查看本站专题:《Python游戏开发技巧总结》、《Python数据结构与算法教程》、《Python Socket编程技巧总结》、《Python函数使用技巧总结》、《Python字符串操作技巧汇总》、《Python入门与进阶经典教程》及《Python文件与目录操作技巧汇总》
希望本文所述对大家Python程序设计有所帮助。
声明:本文内容来源于网络,版权归原作者所有,内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:notice#nhooo.com(发邮件时,请将#更换为@)进行举报,并提供相关证据,一经查实,本站将立刻删除涉嫌侵权内容。