在数据分析中经常需要从csv格式的文件中存取数据以及将数据写书到csv文件中。将csv文件中的数据直接读取为 dict 类型和 DataFrame 是非常方便也很省事的一种做法,以下代码以鸢尾花数据为例。
csv文件读取为dict
代码
# -*- coding: utf-8 -*- import csv with open('E:/iris.csv') as csvfile: reader = csv.DictReader(csvfile, fieldnames=None) # fieldnames默认为None,如果所读csv文件没有表头,则需要指定 list_1 = [e for e in reader] # 每行数据作为一个dict存入链表中 csvfile.close() print list_1[0]
输出
{'Petal.Length': '1.4', 'Sepal.Length': '5.1', 'Petal.Width': '0.2', 'Sepal.Width': '3.5', 'Species': 'setosa'}
如果读入的每条数据需要单独处理且数据量较大,推荐逐条处理然后再放入。
list_1 = list() for e in reader: list_1.append(your_func(e)) # your_func为每条数据的处理函数
多条类型为dict的数据写入csv文件
代码
# 数据 data = [ {'Petal.Length': '1.4', 'Sepal.Length': '5.1', 'Petal.Width': '0.2', 'Sepal.Width': '3.5', 'Species': 'setosa'}, {'Petal.Length': '1.4', 'Sepal.Length': '4.9', 'Petal.Width': '0.2', 'Sepal.Width': '3', 'Species': 'setosa'}, {'Petal.Length': '1.3', 'Sepal.Length': '4.7', 'Petal.Width': '0.2', 'Sepal.Width': '3.2', 'Species': 'setosa'}, {'Petal.Length': '1.5', 'Sepal.Length': '4.6', 'Petal.Width': '0.2', 'Sepal.Width': '3.1', 'Species': 'setosa'} ] # 表头 header = ['Petal.Length', 'Sepal.Length', 'Petal.Width', 'Sepal.Width', 'Species'] print len(data) with open('E:/dst.csv', 'wb') as dstfile: #写入方式选择wb,否则有空行 writer = csv.DictWriter(dstfile, fieldnames=header) writer.writeheader() # 写入表头 writer.writerows(data) # 批量写入 dstfile.close()
上述代码将数据整体写入csv文件,如果数据量较多且想实时查看写入了多少数据可以使用 writerows 函数。
读取csv文件为DataFrame
代码
# 读取csv文件为DataFrame import pandas as pd dframe = pd.DataFrame.from_csv('E:/iris.csv')
也可以稍微曲折点:
import csv import pandas as pd with open('E:/iris.csv') as csvfile: reader = csv.DictReader(csvfile, fieldnames=None) # fieldnames默认为None,如果所读csv文件没有表头,则需要指定 list_1 = [e for e in reader] # 每行数据作为一个dict存入链表中 csvfile.close() dfrme = pd.DataFrame.from_records(list_1)
从zip文件中读取指定csv文件为DataFrame
dst.zip文件中包含有dst.csv和其它文件,现在在不解压缩的情况下直接读取dst.csv文件为DataFrame.
import pandas as pd import zipfile z_file = zipfile.ZipFile('E:/dst.zip') dframe = pd.read_csv(z_file.open('dst.csv')) z_file.close() print dframe
DataFrame写入csv文件
dfrme.to_csv('E:/dst.csv', index=False) # 不要每行的编号
读取txt文件为DataFrame
import pandas as pd # `path`为文件路径或文件句柄,`header`文件第一行是否是表头,`delimiter`每个字段的分隔符,`dtype`数据读入后的存储类型。 frame = pd.read_table(path, header=None, index_col=False, delimiter='\t', dtype=str)
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持呐喊教程。
声明:本文内容来源于网络,版权归原作者所有,内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:notice#nhooo.com(发邮件时,请将#更换为@)进行举报,并提供相关证据,一经查实,本站将立刻删除涉嫌侵权内容。