本文实例为大家分享了SVM手写数字识别功能的具体代码,供大家参考,具体内容如下
1、SVM手写数字识别
识别步骤:
(1)样本图像的准备。
(2)图像尺寸标准化:将图像大小都标准化为8*8大小。
(3)读取未知样本图像,提取图像特征,生成图像特征组。
(4)将未知测试样本图像特征组送入SVM进行测试,将测试的结果输出。
识别代码:
#!/usr/bin/env python import numpy as np import mlpy import cv2 print 'loading ...' def getnumc(fn): '''返回数字特征''' fnimg = cv2.imread(fn) #读取图像 img=cv2.resize(fnimg,(8,8)) #将图像大小调整为8*8 alltz=[] for now_h in xrange(0,8): xtz=[] for now_w in xrange(0,8): b = img[now_h,now_w,0] g = img[now_h,now_w,1] r = img[now_h,now_w,2] btz=255-b gtz=255-g rtz=255-r if btz>0 or gtz>0 or rtz>0: nowtz=1 else: nowtz=0 xtz.append(nowtz) alltz+=xtz return alltz #读取样本数字 x=[] y=[] for numi in xrange(1,10): for numij in xrange(1,5): fn='nums/'+str(numi)+'-'+str(numij)+'.png' x.append(getnumc(fn)) y.append(numi) x=np.array(x) y=np.array(y) svm = mlpy.LibSvm(svm_type='c_svc', kernel_type='poly',gamma=10) svm.learn(x, y) print u"训练样本测试:" print svm.pred(x) print u"未知图像测试:" for iii in xrange (1,10): testfn= 'nums/test/'+str(iii)+'-test.png' testx=[] testx.append(getnumc(testfn)) print print testfn+":", print svm.pred(testx)
样本:
结果:
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持呐喊教程。
声明:本文内容来源于网络,版权归原作者所有,内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:notice#nhooo.com(发邮件时,请将#更换为@)进行举报,并提供相关证据,一经查实,本站将立刻删除涉嫌侵权内容。