考虑这样一个问题,给定一个矩阵(多维数组,numpy.ndarray()),如何shuffle这个矩阵(也就是对其行进行全排列),如何随机地选择其中的k行,这叫组合,实现一种某一维度空间的切片。例如五列中选三列(全部三列的排列数),便从原有的五维空间中降维到三维空间,因为是全部的排列数,故不会漏掉任何一种可能性。
涉及的函数主要有:
np.random.permutation()
itertools.combinations()
itertools.permutations()
# 1. 对0-5之间的数进行一次全排列 >>>np.random.permutation(6) array([3, 1, 5, 4, 0, 2]) # 2. 创建待排矩阵 >>>A = np.array([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]]) # 3. shuffle矩阵A >>>p = np.random.permutation(A.shape[0]) >>>p array([1, 2, 0]) >>>A[p, :] array([[ 5, 6, 7, 8], [ 9, 10, 11, 12], [ 1, 2, 3, 4]])
C52的实现
>>>from itertools import combinations >>>combins = [c for c in combinations(range(5), 2)] >>>len(combins) 10 >>>combins # 而且是按序排列 [(0, 1), (0, 2), (0, 3), (0, 4), (1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)]
A52的实现
>>>from itertools import permutations >>>pertumations(range(5), 2) <itertools.permutations object at 0x0233E360> >>>perms = permutations(range(5), 2) >>>perms [(0, 1), (0, 2), (0, 3), (0, 4), (1, 0), (1, 2), (1, 3), (1, 4), (2, 0), (2, 1), (2, 3), (2, 4), (3, 0), (3, 1), (3, 2), (3, 4), (4, 0), (4, 1), (4, 2), (4, 3)] >>>len(perms) 20
# 5. 任取其中的k(k=2)行 >>>c = [c for c in combinations(range(A.shape[0]), 2)] >>>A[c[0], :] # 一种排列 array([[1, 2, 3, 4], [5, 6, 7, 8]])
下面再介绍一个列表数据任意组合,主要是利用自带的库
#_*_ coding:utf-8 _*_ #__author__='dragon' import itertools list1 = [1,2,3,4,5] list2 = [] for i in range(1,len(list1)+1): iter = itertools.combinations(list1,i) list2.append(list(iter)) print(list2)
[[(1,), (2,), (3,), (4,), (5,)], [(1, 2), (1, 3), (1, 4), (1, 5), (2, 3), (2, 4), (2, 5), (3, 4), (3, 5), (4, 5)], [(1, 2, 3), (1, 2, 4), (1, 2, 5), (1, 3, 4), (1, 3, 5), (1, 4, 5), (2, 3, 4), (2, 3, 5), (2, 4, 5), (3, 4, 5)], [(1, 2, 3, 4), (1, 2, 3, 5), (1, 2, 4, 5), (1, 3, 4, 5), (2, 3, 4, 5)], [(1, 2, 3, 4, 5)]]
排列的实现
#_*_ coding:utf-8 _*_ #__author__='dragon' import itertools list1 = [1,2,3,4,5] list2 = [] for i in range(1,len(list1)+1): iter = itertools.permutations(list1,i) list2.append(list(iter)) print(list2)
运行结果:
[[(1,), (2,), (3,), (4,), (5,)], [(1, 2), (1, 3), (1, 4), (1, 5), (2, 1), (2, 3), (2, 4), (2, 5), (3, 1), (3, 2), (3, 4), (3, 5), (4, 1), (4, 2), (4, 3), (4, 5), (5, 1), (5, 2), (5, 3), (5, 4)], [(1, 2, 3), (1, 2, 4), (1, 2, 5), (1, 3, 2), (1, 3, 4), (1, 3, 5), (1, 4, 2), (1, 4, 3), (1, 4, 5), (1, 5, 2), (1, 5, 3), (1, 5, 4), (2, 1, 3), (2, 1, 4), (2, 1, 5), (2, 3, 1), (2, 3, 4), (2, 3, 5), (2, 4, 1), (2, 4, 3), (2, 4, 5), (2, 5, 1), (2, 5, 3), (2, 5, 4), (3, 1, 2), (3, 1, 4), (3, 1, 5), (3, 2, 1), (3, 2, 4), (3, 2, 5), (3, 4, 1), (3, 4, 2), (3, 4, 5), (3, 5, 1), (3, 5, 2), (3, 5, 4), (4, 1, 2), (4, 1, 3), (4, 1, 5), (4, 2, 1), (4, 2, 3), (4, 2, 5), (4, 3, 1), (4, 3, 2), (4, 3, 5), (4, 5, 1), (4, 5, 2), (4, 5, 3), (5, 1, 2), (5, 1, 3), (5, 1, 4), (5, 2, 1), (5, 2, 3), (5, 2, 4), (5, 3, 1), (5, 3, 2), (5, 3, 4), (5, 4, 1), (5, 4, 2), (5, 4, 3)], [(1, 2, 3, 4), (1, 2, 3, 5), (1, 2, 4, 3), (1, 2, 4, 5), (1, 2, 5, 3), (1, 2, 5, 4), (1, 3, 2, 4), (1, 3, 2, 5), (1, 3, 4, 2), (1, 3, 4, 5), (1, 3, 5, 2), (1, 3, 5, 4), (1, 4, 2, 3), (1, 4, 2, 5), (1, 4, 3, 2), (1, 4, 3, 5), (1, 4, 5, 2), (1, 4, 5, 3), (1, 5, 2, 3), (1, 5, 2, 4), (1, 5, 3, 2), (1, 5, 3, 4), (1, 5, 4, 2), (1, 5, 4, 3), (2, 1, 3, 4), (2, 1, 3, 5), (2, 1, 4, 3), (2, 1, 4, 5), (2, 1, 5, 3), (2, 1, 5, 4), (2, 3, 1, 4), (2, 3, 1, 5), (2, 3, 4, 1), (2, 3, 4, 5), (2, 3, 5, 1), (2, 3, 5, 4), (2, 4, 1, 3), (2, 4, 1, 5), (2, 4, 3, 1), (2, 4, 3, 5), (2, 4, 5, 1), (2, 4, 5, 3), (2, 5, 1, 3), (2, 5, 1, 4), (2, 5, 3, 1), (2, 5, 3, 4), (2, 5, 4, 1), (2, 5, 4, 3), (3, 1, 2, 4), (3, 1, 2, 5), (3, 1, 4, 2), (3, 1, 4, 5), (3, 1, 5, 2), (3, 1, 5, 4), (3, 2, 1, 4), (3, 2, 1, 5), (3, 2, 4, 1), (3, 2, 4, 5), (3, 2, 5, 1), (3, 2, 5, 4), (3, 4, 1, 2), (3, 4, 1, 5), (3, 4, 2, 1), (3, 4, 2, 5), (3, 4, 5, 1), (3, 4, 5, 2), (3, 5, 1, 2), (3, 5, 1, 4), (3, 5, 2, 1), (3, 5, 2, 4), (3, 5, 4, 1), (3, 5, 4, 2), (4, 1, 2, 3), (4, 1, 2, 5), (4, 1, 3, 2), (4, 1, 3, 5), (4, 1, 5, 2), (4, 1, 5, 3), (4, 2, 1, 3), (4, 2, 1, 5), (4, 2, 3, 1), (4, 2, 3, 5), (4, 2, 5, 1), (4, 2, 5, 3), (4, 3, 1, 2), (4, 3, 1, 5), (4, 3, 2, 1), (4, 3, 2, 5), (4, 3, 5, 1), (4, 3, 5, 2), (4, 5, 1, 2), (4, 5, 1, 3), (4, 5, 2, 1), (4, 5, 2, 3), (4, 5, 3, 1), (4, 5, 3, 2), (5, 1, 2, 3), (5, 1, 2, 4), (5, 1, 3, 2), (5, 1, 3, 4), (5, 1, 4, 2), (5, 1, 4, 3), (5, 2, 1, 3), (5, 2, 1, 4), (5, 2, 3, 1), (5, 2, 3, 4), (5, 2, 4, 1), (5, 2, 4, 3), (5, 3, 1, 2), (5, 3, 1, 4), (5, 3, 2, 1), (5, 3, 2, 4), (5, 3, 4, 1), (5, 3, 4, 2), (5, 4, 1, 2), (5, 4, 1, 3), (5, 4, 2, 1), (5, 4, 2, 3), (5, 4, 3, 1), (5, 4, 3, 2)], [(1, 2, 3, 4, 5), (1, 2, 3, 5, 4), (1, 2, 4, 3, 5), (1, 2, 4, 5, 3), (1, 2, 5, 3, 4), (1, 2, 5, 4, 3), (1, 3, 2, 4, 5), (1, 3, 2, 5, 4), (1, 3, 4, 2, 5), (1, 3, 4, 5, 2), (1, 3, 5, 2, 4), (1, 3, 5, 4, 2), (1, 4, 2, 3, 5), (1, 4, 2, 5, 3), (1, 4, 3, 2, 5), (1, 4, 3, 5, 2), (1, 4, 5, 2, 3), (1, 4, 5, 3, 2), (1, 5, 2, 3, 4), (1, 5, 2, 4, 3), (1, 5, 3, 2, 4), (1, 5, 3, 4, 2), (1, 5, 4, 2, 3), (1, 5, 4, 3, 2), (2, 1, 3, 4, 5), (2, 1, 3, 5, 4), (2, 1, 4, 3, 5), (2, 1, 4, 5, 3), (2, 1, 5, 3, 4), (2, 1, 5, 4, 3), (2, 3, 1, 4, 5), (2, 3, 1, 5, 4), (2, 3, 4, 1, 5), (2, 3, 4, 5, 1), (2, 3, 5, 1, 4), (2, 3, 5, 4, 1), (2, 4, 1, 3, 5), (2, 4, 1, 5, 3), (2, 4, 3, 1, 5), (2, 4, 3, 5, 1), (2, 4, 5, 1, 3), (2, 4, 5, 3, 1), (2, 5, 1, 3, 4), (2, 5, 1, 4, 3), (2, 5, 3, 1, 4), (2, 5, 3, 4, 1), (2, 5, 4, 1, 3), (2, 5, 4, 3, 1), (3, 1, 2, 4, 5), (3, 1, 2, 5, 4), (3, 1, 4, 2, 5), (3, 1, 4, 5, 2), (3, 1, 5, 2, 4), (3, 1, 5, 4, 2), (3, 2, 1, 4, 5), (3, 2, 1, 5, 4), (3, 2, 4, 1, 5), (3, 2, 4, 5, 1), (3, 2, 5, 1, 4), (3, 2, 5, 4, 1), (3, 4, 1, 2, 5), (3, 4, 1, 5, 2), (3, 4, 2, 1, 5), (3, 4, 2, 5, 1), (3, 4, 5, 1, 2), (3, 4, 5, 2, 1), (3, 5, 1, 2, 4), (3, 5, 1, 4, 2), (3, 5, 2, 1, 4), (3, 5, 2, 4, 1), (3, 5, 4, 1, 2), (3, 5, 4, 2, 1), (4, 1, 2, 3, 5), (4, 1, 2, 5, 3), (4, 1, 3, 2, 5), (4, 1, 3, 5, 2), (4, 1, 5, 2, 3), (4, 1, 5, 3, 2), (4, 2, 1, 3, 5), (4, 2, 1, 5, 3), (4, 2, 3, 1, 5), (4, 2, 3, 5, 1), (4, 2, 5, 1, 3), (4, 2, 5, 3, 1), (4, 3, 1, 2, 5), (4, 3, 1, 5, 2), (4, 3, 2, 1, 5), (4, 3, 2, 5, 1), (4, 3, 5, 1, 2), (4, 3, 5, 2, 1), (4, 5, 1, 2, 3), (4, 5, 1, 3, 2), (4, 5, 2, 1, 3), (4, 5, 2, 3, 1), (4, 5, 3, 1, 2), (4, 5, 3, 2, 1), (5, 1, 2, 3, 4), (5, 1, 2, 4, 3), (5, 1, 3, 2, 4), (5, 1, 3, 4, 2), (5, 1, 4, 2, 3), (5, 1, 4, 3, 2), (5, 2, 1, 3, 4), (5, 2, 1, 4, 3), (5, 2, 3, 1, 4), (5, 2, 3, 4, 1), (5, 2, 4, 1, 3), (5, 2, 4, 3, 1), (5, 3, 1, 2, 4), (5, 3, 1, 4, 2), (5, 3, 2, 1, 4), (5, 3, 2, 4, 1), (5, 3, 4, 1, 2), (5, 3, 4, 2, 1), (5, 4, 1, 2, 3), (5, 4, 1, 3, 2), (5, 4, 2, 1, 3), (5, 4, 2, 3, 1), (5, 4, 3, 1, 2), (5, 4, 3, 2, 1)]]
可以根据你需要随意组合
python实现排列组合公式C(m,n)求值
# -*- coding:utf-8 -*- # 用python实现排列组合C(n,m) = n!/m!*(n-m)! def get_value(n): if n==1: return n else: return n * get_value(n-1) def gen_last_value(n,m): first = get_value(n) print "n:%s value:%s"%(n, first) second = get_value(m) print "n:%s value:%s"%(m, second) third = get_value((n-m)) print "n:%s value:%s"%((n-m), third) return first/(second * third) if __name__ == "__main__": # C(12,5) rest = gen_last_value(5,3) print "value:", rest
运行结果:
n:5 value:120 n:3 value:6 n:2 value:2 value: 10
总结
以上就是本文关于Python排列组合算法的全部内容,希望对大家有所帮助。感兴趣的朋友可以继续参阅本站:Python数据结构与算法之列表(链表,linked list)简单实现、Python算法之求n个节点不同二叉树个数等,有什么问题可以随时留言,小编会及时回复大家的。
声明:本文内容来源于网络,版权归原作者所有,内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:notice#nhooo.com(发邮件时,请将#更换为@)进行举报,并提供相关证据,一经查实,本站将立刻删除涉嫌侵权内容。