Java提供了许多创建线程池的方式,并得到一个Future实例来作为任务结果。对于Spring同样小菜一碟,通过其scheduling包就可以做到将任务线程中后台执行。
在本文的第一部分中,我们将讨论下Spring中执行计划任务的一些基础知识。之后,我们将解释这些类是如何一起协作来启动并执行计划任务的。下一部分将介绍计划和异步任务的配置。最后,我们来写个Demo,看看如何通过单元测试来编排计划任务。
什么是Spring中的异步任务?
在我们正式的进入话题之前,对于Spring,我们需要理解下它实现的两个不同的概念:异步任务和调度任务。显然,两者有一个很大的共同点:都在后台工作。但是,它们之间存在了很大差异。调度任务与异步不同,其作用与Linux中的CRON job完全相同(windows里面也有计划任务)。举个栗子,有一个任务必须每40分钟执行一次,那么,可以通过XML文件或者注解来进行此配置。简单的异步任务在后台执行就好,无需配置执行频率。
因为它们是两种不同的任务类型,它们两个的执行者自然也就不同。第一个看起来有点像Java的并发执行器(concurrency executor),这里会有专门去写一篇关于Java中的执行器来具体了解。根据Spring文档TaskExecutor所述,它提供了基于Spring的抽象来处理线程池,这点,也可以通过其类的注释去了解。另一个抽象接口是TaskScheduler,它用于在将来给定的时间点来安排任务,并执行一次或定期执行。
在分析源码的过程中,发现另一个比较有趣的点是触发器。它存在两种类型:CronTrigger或PeriodTrigger。第一个模拟CRON任务的行为。所以我们可以在将来确切时间点提交一个任务的执行。另一个触发器可用于定期执行任务。
Spring的异步任务类
让我们从org.springframework.core.task.TaskExecutor类的分析开始。你会发现,其简单的不行,它是一个扩展Java的Executor接口的接口。它的唯一方法也就是是执行,在参数中使用Runnable类型的任务。
package org.springframework.core.task; import java.util.concurrent.Executor; /** * Simple task executor interface that abstracts the execution * of a {@link Runnable}. * * <p>Implementations can use all sorts of different execution strategies, * such as: synchronous, asynchronous, using a thread pool, and more. * * <p>Equivalent to JDK 1.5's {@link java.util.concurrent.Executor} * interface; extending it now in Spring 3.0, so that clients may declare * a dependency on an Executor and receive any TaskExecutor implementation. * This interface remains separate from the standard Executor interface * mainly for backwards compatibility with JDK 1.4 in Spring 2.x. * * @author Juergen Hoeller * @since 2.0 * @see java.util.concurrent.Executor */ @FunctionalInterface public interface TaskExecutor extends Executor { /** * Execute the given {@code task}. * <p>The call might return immediately if the implementation uses * an asynchronous execution strategy, or might block in the case * of synchronous execution. * @param task the {@code Runnable} to execute (never {@code null}) * @throws TaskRejectedException if the given task was not accepted */ @Override void execute(Runnable task); }
相对来说,org.springframework.scheduling.TaskScheduler接口就有点复杂了。它定义了一组以schedule开头的名称的方法允许我们定义将来要执行的任务。所有 schedule* 方法返回java.util.concurrent.ScheduledFuture实例。Spring5中对scheduleAtFixedRate方法做了进一步的充实,其实最终调用的还是ScheduledFuture<?> scheduleAtFixedRate(Runnable task, long period);
public interface TaskScheduler { /** * Schedule the given {@link Runnable}, invoking it whenever the trigger * indicates a next execution time. * <p>Execution will end once the scheduler shuts down or the returned * {@link ScheduledFuture} gets cancelled. * @param task the Runnable to execute whenever the trigger fires * @param trigger an implementation of the {@link Trigger} interface, * e.g. a {@link org.springframework.scheduling.support.CronTrigger} object * wrapping a cron expression * @return a {@link ScheduledFuture} representing pending completion of the task, * or {@code null} if the given Trigger object never fires (i.e. returns * {@code null} from {@link Trigger#nextExecutionTime}) * @throws org.springframework.core.task.TaskRejectedException if the given task was not accepted * for internal reasons (e.g. a pool overload handling policy or a pool shutdown in progress) * @see org.springframework.scheduling.support.CronTrigger */ @Nullable ScheduledFuture<?> schedule(Runnable task, Trigger trigger); /** * Schedule the given {@link Runnable}, invoking it at the specified execution time. * <p>Execution will end once the scheduler shuts down or the returned * {@link ScheduledFuture} gets cancelled. * @param task the Runnable to execute whenever the trigger fires * @param startTime the desired execution time for the task * (if this is in the past, the task will be executed immediately, i.e. as soon as possible) * @return a {@link ScheduledFuture} representing pending completion of the task * @throws org.springframework.core.task.TaskRejectedException if the given task was not accepted * for internal reasons (e.g. a pool overload handling policy or a pool shutdown in progress) * 使用了默认实现,值得我们学习使用的,Java9中同样可以有私有实现的,从这里我们可以做到我只通过 * 一个接口你来实现,我把其他相应的功能默认实现下,最后调用你自定义实现的接口即可,使接口功能更 * 加一目了然 * @since 5.0 * @see #schedule(Runnable, Date) */ default ScheduledFuture<?> schedule(Runnable task, Instant startTime) { return schedule(task, Date.from(startTime)); } /** * Schedule the given {@link Runnable}, invoking it at the specified execution time. * <p>Execution will end once the scheduler shuts down or the returned * {@link ScheduledFuture} gets cancelled. * @param task the Runnable to execute whenever the trigger fires * @param startTime the desired execution time for the task * (if this is in the past, the task will be executed immediately, i.e. as soon as possible) * @return a {@link ScheduledFuture} representing pending completion of the task * @throws org.springframework.core.task.TaskRejectedException if the given task was not accepted * for internal reasons (e.g. a pool overload handling policy or a pool shutdown in progress) */ ScheduledFuture<?> schedule(Runnable task, Date startTime); ... /** * Schedule the given {@link Runnable}, invoking it at the specified execution time * and subsequently with the given period. * <p>Execution will end once the scheduler shuts down or the returned * {@link ScheduledFuture} gets cancelled. * @param task the Runnable to execute whenever the trigger fires * @param startTime the desired first execution time for the task * (if this is in the past, the task will be executed immediately, i.e. as soon as possible) * @param period the interval between successive executions of the task * @return a {@link ScheduledFuture} representing pending completion of the task * @throws org.springframework.core.task.TaskRejectedException if the given task was not accepted * for internal reasons (e.g. a pool overload handling policy or a pool shutdown in progress) * @since 5.0 * @see #scheduleAtFixedRate(Runnable, Date, long) */ default ScheduledFuture<?> scheduleAtFixedRate(Runnable task, Instant startTime, Duration period) { return scheduleAtFixedRate(task, Date.from(startTime), period.toMillis()); } /** * Schedule the given {@link Runnable}, invoking it at the specified execution time * and subsequently with the given period. * <p>Execution will end once the scheduler shuts down or the returned * {@link ScheduledFuture} gets cancelled. * @param task the Runnable to execute whenever the trigger fires * @param startTime the desired first execution time for the task * (if this is in the past, the task will be executed immediately, i.e. as soon as possible) * @param period the interval between successive executions of the task (in milliseconds) * @return a {@link ScheduledFuture} representing pending completion of the task * @throws org.springframework.core.task.TaskRejectedException if the given task was not accepted * for internal reasons (e.g. a pool overload handling policy or a pool shutdown in progress) */ ScheduledFuture<?> scheduleAtFixedRate(Runnable task, Date startTime, long period); ... }
之前提到两个触发器组件,都实现了org.springframework.scheduling.Trigger接口。这里,我们只需关注一个的方法nextExecutionTime ,其定义下一个触发任务的执行时间。它的两个实现,CronTrigger和PeriodicTrigger,由org.springframework.scheduling.TriggerContext来实现信息的存储,由此,我们可以很轻松获得一个任务的最后一个执行时间(lastScheduledExecutionTime),给定任务的最后完成时间(lastCompletionTime)或最后一个实际执行时间(lastActualExecutionTime)。接下来,我们通过阅读源代码来简单的了解下这些东西。org.springframework.scheduling.concurrent.ConcurrentTaskScheduler包含一个私有类EnterpriseConcurrentTriggerScheduler。在这个class里面,我们可以找到schedule方法:
public ScheduledFuture<?> schedule(Runnable task, final Trigger trigger) { ManagedScheduledExecutorService executor = (ManagedScheduledExecutorService) scheduledExecutor; return executor.schedule(task, new javax.enterprise.concurrent.Trigger() { @Override public Date getNextRunTime(LastExecution le, Date taskScheduledTime) { return trigger.nextExecutionTime(le != null ? new SimpleTriggerContext(le.getScheduledStart(), le.getRunStart(), le.getRunEnd()) : new SimpleTriggerContext()); } @Override public boolean skipRun(LastExecution lastExecution, Date scheduledRunTime) { return false; } }); }
SimpleTriggerContext从其名字就可以看到很多东西了,因为它实现了TriggerContext接口。
/** * Simple data holder implementation of the {@link TriggerContext} interface. * * @author Juergen Hoeller * @since 3.0 */ public class SimpleTriggerContext implements TriggerContext { @Nullable private volatile Date lastScheduledExecutionTime; @Nullable private volatile Date lastActualExecutionTime; @Nullable private volatile Date lastCompletionTime; ... /** * Create a SimpleTriggerContext with the given time values. * @param lastScheduledExecutionTime last <i>scheduled</i> execution time * @param lastActualExecutionTime last <i>actual</i> execution time * @param lastCompletionTime last completion time */ public SimpleTriggerContext(Date lastScheduledExecutionTime, Date lastActualExecutionTime, Date lastCompletionTime) { this.lastScheduledExecutionTime = lastScheduledExecutionTime; this.lastActualExecutionTime = lastActualExecutionTime; this.lastCompletionTime = lastCompletionTime; } ... }
也正如你看到的,在构造函数中设置的时间值来自javax.enterprise.concurrent.LastExecution的实现,其中:
Spring调度和异步执行中的另一个重要类是org.springframework.core.task.support.TaskExecutorAdapter。它是一个将java.util.concurrent.Executor作为Spring基本的执行器的适配器(描述的有点拗口,看下面代码就明了了),之前已经描述了TaskExecutor。实际上,它引用了Java的ExecutorService,它也是继承了Executor接口。此引用用于完成所有提交的任务。
/** * Adapter that takes a JDK {@code java.util.concurrent.Executor} and * exposes a Spring {@link org.springframework.core.task.TaskExecutor} for it. * Also detects an extended {@code java.util.concurrent.ExecutorService 从此解释上面的说明}, adapting * the {@link org.springframework.core.task.AsyncTaskExecutor} interface accordingly. * * @author Juergen Hoeller * @since 3.0 * @see java.util.concurrent.Executor * @see java.util.concurrent.ExecutorService * @see java.util.concurrent.Executors */ public class TaskExecutorAdapter implements AsyncListenableTaskExecutor { private final Executor concurrentExecutor; @Nullable private TaskDecorator taskDecorator; ... /** * Create a new TaskExecutorAdapter, * using the given JDK concurrent executor. * @param concurrentExecutor the JDK concurrent executor to delegate to */ public TaskExecutorAdapter(Executor concurrentExecutor) { Assert.notNull(concurrentExecutor, "Executor must not be null"); this.concurrentExecutor = concurrentExecutor; } /** * Delegates to the specified JDK concurrent executor. * @see java.util.concurrent.Executor#execute(Runnable) */ @Override public void execute(Runnable task) { try { doExecute(this.concurrentExecutor, this.taskDecorator, task); } catch (RejectedExecutionException ex) { throw new TaskRejectedException( "Executor [" + this.concurrentExecutor + "] did not accept task: " + task, ex); } } @Override public void execute(Runnable task, long startTimeout) { execute(task); } @Override public Future<?> submit(Runnable task) { try { if (this.taskDecorator == null && this.concurrentExecutor instanceof ExecutorService) { return ((ExecutorService) this.concurrentExecutor).submit(task); } else { FutureTask<Object> future = new FutureTask<>(task, null); doExecute(this.concurrentExecutor, this.taskDecorator, future); return future; } } catch (RejectedExecutionException ex) { throw new TaskRejectedException( "Executor [" + this.concurrentExecutor + "] did not accept task: " + task, ex); } } ... }
在Spring中配置异步和计划任务
下面我们通过代码的方式来实现异步任务。首先,我们需要通过注解来启用配置。它的XML配置如下:
<task:scheduler id="taskScheduler"/> <task:executor id="taskExecutor" pool-size="2" /> <task:annotation-driven executor="taskExecutor" scheduler="taskScheduler"/> <context:component-scan base-package="com.migo.async"/>
可以通过将@EnableScheduling和@EnableAsync注解添加到配置类(用@Configuration注解)来激活两者。完事,我们就可以开始着手实现调度和异步任务。为了实现调度任务,我们可以使用@Scheduled注解。我们可以从org.springframework.scheduling.annotation包中找到这个注解。它包含了以下几个属性:
protected void processScheduled(Scheduled scheduled, Method method, Object bean) { try { Assert.isTrue(method.getParameterCount() == 0, "Only no-arg methods may be annotated with @Scheduled"); /** * 之前的版本中直接把返回值非空的给拒掉了,在Spring 4.3 Spring5 的版本中就没那么严格了 * Assert.isTrue(void.class.equals(method.getReturnType()), * "Only void-returning methods may be annotated with @Scheduled"); **/ // ...
/** * 注释很重要 * An annotation that marks a method to be scheduled. Exactly one of * the {@link #cron()}, {@link #fixedDelay()}, or {@link #fixedRate()} * attributes must be specified. * * <p>The annotated method must expect no arguments. It will typically have * a {@code void} return type; if not, the returned value will be ignored * when called through the scheduler. * * <p>Processing of {@code @Scheduled} annotations is performed by * registering a {@link ScheduledAnnotationBeanPostProcessor}. This can be * done manually or, more conveniently, through the {@code <task:annotation-driven/>} * element or @{@link EnableScheduling} annotation. * * <p>This annotation may be used as a <em>meta-annotation</em> to create custom * <em>composed annotations</em> with attribute overrides. * * @author Mark Fisher * @author Dave Syer * @author Chris Beams * @since 3.0 * @see EnableScheduling * @see ScheduledAnnotationBeanPostProcessor * @see Schedules */ @Target({ElementType.METHOD, ElementType.ANNOTATION_TYPE}) @Retention(RetentionPolicy.RUNTIME) @Documented @Repeatable(Schedules.class) public @interface Scheduled { ... }
使用@Async注解标记一个方法或一个类(通过标记一个类,我们自动将其所有方法标记为异步)。与@Scheduled不同,异步任务可以接受参数,并可能返回某些东西。
写一个在Spring中执行异步任务的Demo
有了上面这些知识,我们可以来编写异步和计划任务。我们将通过测试用例来展示。我们从不同的任务执行器(task executors)的测试开始:
@RunWith(SpringJUnit4ClassRunner.class) @ContextConfiguration(locations={"classpath:applicationContext-test.xml"}) @WebAppConfiguration public class TaskExecutorsTest { @Test public void simpeAsync() throws InterruptedException { /** * SimpleAsyncTaskExecutor creates new Thread for every task and executes it asynchronously. The threads aren't reused as in * native Java's thread pools. * * The number of concurrently executed threads can be specified through concurrencyLimit bean property * (concurrencyLimit XML attribute). Here it's more simple to invoke setConcurrencyLimit method. * Here the tasks will be executed by 2 simultaneous threads. Without specifying this value, * the number of executed threads will be indefinite. * * You can observe that only 2 tasks are executed at a given time - even if 3 are submitted to execution (lines 40-42). **/ SimpleAsyncTaskExecutor executor = new SimpleAsyncTaskExecutor("thread_name_prefix_____"); executor.setConcurrencyLimit(2); executor.execute(new SimpleTask("SimpleAsyncTask-1", Counters.simpleAsyncTask, 1000)); executor.execute(new SimpleTask("SimpleAsyncTask-2", Counters.simpleAsyncTask, 1000)); Thread.sleep(1050); assertTrue("2 threads should be terminated, but "+Counters.simpleAsyncTask.getNb()+" were instead", Counters.simpleAsyncTask.getNb() == 2); executor.execute(new SimpleTask("SimpleAsyncTask-3", Counters.simpleAsyncTask, 1000)); executor.execute(new SimpleTask("SimpleAsyncTask-4", Counters.simpleAsyncTask, 1000)); executor.execute(new SimpleTask("SimpleAsyncTask-5", Counters.simpleAsyncTask, 2000)); Thread.sleep(1050); assertTrue("4 threads should be terminated, but "+Counters.simpleAsyncTask.getNb()+" were instead", Counters.simpleAsyncTask.getNb() == 4); executor.execute(new SimpleTask("SimpleAsyncTask-6", Counters.simpleAsyncTask, 1000)); Thread.sleep(1050); assertTrue("6 threads should be terminated, but "+Counters.simpleAsyncTask.getNb()+" were instead", Counters.simpleAsyncTask.getNb() == 6); } @Test public void syncTaskTest() { /** * SyncTask works almost as Java's CountDownLatch. In fact, this executor is synchronous with the calling thread. In our case, * SyncTaskExecutor tasks will be synchronous with JUnit thread. It means that the testing thread will sleep 5 * seconds after executing the third task ('SyncTask-3'). To prove that, we check if the total execution time is ~5 seconds. **/ long start = System.currentTimeMillis(); SyncTaskExecutor executor = new SyncTaskExecutor(); executor.execute(new SimpleTask("SyncTask-1", Counters.syncTask, 0)); executor.execute(new SimpleTask("SyncTask-2", Counters.syncTask, 0)); executor.execute(new SimpleTask("SyncTask-3", Counters.syncTask, 0)); executor.execute(new SimpleTask("SyncTask-4", Counters.syncTask, 5000)); executor.execute(new SimpleTask("SyncTask-5", Counters.syncTask, 0)); long end = System.currentTimeMillis(); int execTime = Math.round((end-start)/1000); assertTrue("Execution time should be 5 seconds but was "+execTime+" seconds", execTime == 5); } @Test public void threadPoolTest() throws InterruptedException { /** * This executor can be used to expose Java's native ThreadPoolExecutor as Spring bean, with the * possibility to set core pool size, max pool size and queue capacity through bean properties. * * It works exactly as ThreadPoolExecutor from java.util.concurrent package. It means that our pool starts * with 2 threads (core pool size) and can be growth until 3 (max pool size). * In additionally, 1 task can be stored in the queue. This task will be treated * as soon as one from 3 threads ends to execute provided task. In our case, we try to execute 5 tasks * in 3 places pool and 1 place queue. So the 5th task should be rejected and TaskRejectedException should be thrown. **/ ThreadPoolTaskExecutor executor = new ThreadPoolTaskExecutor(); executor.setCorePoolSize(2); executor.setMaxPoolSize(3); executor.setQueueCapacity(1); executor.initialize(); executor.execute(new SimpleTask("ThreadPoolTask-1", Counters.threadPool, 1000)); executor.execute(new SimpleTask("ThreadPoolTask-2", Counters.threadPool, 1000)); executor.execute(new SimpleTask("ThreadPoolTask-3", Counters.threadPool, 1000)); executor.execute(new SimpleTask("ThreadPoolTask-4", Counters.threadPool, 1000)); boolean wasTre = false; try { executor.execute(new SimpleTask("ThreadPoolTask-5", Counters.threadPool, 1000)); } catch (TaskRejectedException tre) { wasTre = true; } assertTrue("The last task should throw a TaskRejectedException but it wasn't", wasTre); Thread.sleep(3000); assertTrue("4 tasks should be terminated, but "+Counters.threadPool.getNb()+" were instead", Counters.threadPool.getNb()==4); } } class SimpleTask implements Runnable { private String name; private Counters counter; private int sleepTime; public SimpleTask(String name, Counters counter, int sleepTime) { this.name = name; this.counter = counter; this.sleepTime = sleepTime; } @Override public void run() { try { Thread.sleep(this.sleepTime); } catch (InterruptedException e) { e.printStackTrace(); } this.counter.increment(); System.out.println("Running task '"+this.name+"' in Thread "+Thread.currentThread().getName()); } @Override public String toString() { return "Task {"+this.name+"}"; } } enum Counters { simpleAsyncTask(0), syncTask(0), threadPool(0); private int nb; public int getNb() { return this.nb; } public synchronized void increment() { this.nb++; } private Counters(int n) { this.nb = n; } }
在过去,我们可以有更多的执行器可以使用(SimpleThreadPoolTaskExecutor,TimerTaskExecutor 这些都2.x 3.x的老古董了)。但都被弃用并由本地Java的执行器取代成为Spring的首选。看看输出的结果:
Running task 'SimpleAsyncTask-1' in Thread thread_name_prefix_____1 Running task 'SimpleAsyncTask-2' in Thread thread_name_prefix_____2 Running task 'SimpleAsyncTask-3' in Thread thread_name_prefix_____3 Running task 'SimpleAsyncTask-4' in Thread thread_name_prefix_____4 Running task 'SimpleAsyncTask-5' in Thread thread_name_prefix_____5 Running task 'SimpleAsyncTask-6' in Thread thread_name_prefix_____6 Running task 'SyncTask-1' in Thread main Running task 'SyncTask-2' in Thread main Running task 'SyncTask-3' in Thread main Running task 'SyncTask-4' in Thread main Running task 'SyncTask-5' in Thread main Running task 'ThreadPoolTask-2' in Thread ThreadPoolTaskExecutor-2 Running task 'ThreadPoolTask-1' in Thread ThreadPoolTaskExecutor-1 Running task 'ThreadPoolTask-4' in Thread ThreadPoolTaskExecutor-3 Running task 'ThreadPoolTask-3' in Thread ThreadPoolTaskExecutor-2
以此我们可以推断出,第一个测试为每个任务创建新的线程。通过使用不同的线程名称,我们可以看到相应区别。第二个,同步执行器,应该执行所调用线程中的任务。这里可以看到'main'是主线程的名称,它的主线程调用执行同步所有任务。最后一种例子涉及最大可创建3个线程的线程池。从结果可以看到,他们也确实只有3个创建线程。
现在,我们将编写一些单元测试来看看@Async和@Scheduled实现。
@RunWith(SpringJUnit4ClassRunner.class) @ContextConfiguration(locations={"classpath:applicationContext-test.xml"}) @WebAppConfiguration public class AnnotationTest { @Autowired private GenericApplicationContext context; @Test public void testScheduled() throws InterruptedException { System.out.println("Start sleeping"); Thread.sleep(6000); System.out.println("Wake up !"); TestScheduledTask scheduledTask = (TestScheduledTask) context.getBean("testScheduledTask"); /** * Test fixed delay. It's executed every 6 seconds. The first execution is registered after application's context start. **/ assertTrue("Scheduled task should be executed 2 times (1 before sleep in this method, 1 after the sleep), but was "+scheduledTask.getFixedDelayCounter(), scheduledTask.getFixedDelayCounter() == 2); /** * Test fixed rate. It's executed every 6 seconds. The first execution is registered after application's context start. * Unlike fixed delay, a fixed rate configuration executes one task with specified time. For example, it will execute on * 6 seconds delayed task at 10:30:30, 10:30:36, 10:30:42 and so on - even if the task 10:30:30 taken 30 seconds to * be terminated. In teh case of fixed delay, if the first task takes 30 seconds, the next will be executed 6 seconds * after the first one, so the execution flow will be: 10:30:30, 10:31:06, 10:31:12. **/ assertTrue("Scheduled task should be executed 2 times (1 before sleep in this method, 1 after the sleep), but was "+scheduledTask.getFixedRateCounter(), scheduledTask.getFixedRateCounter() == 2); /** * Test fixed rate with initial delay attribute. The initialDelay attribute is set to 6 seconds. It causes that * scheduled method is executed 6 seconds after application's context start. In our case, it should be executed * only once because of previous Thread.sleep(6000) invocation. **/ assertTrue("Scheduled task should be executed 1 time (0 before sleep in this method, 1 after the sleep), but was "+scheduledTask.getInitialDelayCounter(), scheduledTask.getInitialDelayCounter() == 1); /** * Test cron scheduled task. Cron is scheduled to be executed every 6 seconds. It's executed only once, * so we can deduce that it's not invoked directly before applications * context start, but only after configured time (6 seconds in our case). **/ assertTrue("Scheduled task should be executed 1 time (0 before sleep in this method, 1 after the sleep), but was "+scheduledTask.getCronCounter(), scheduledTask.getCronCounter() == 1); } @Test public void testAsyc() throws InterruptedException { /** * To test @Async annotation, we can create a bean in-the-fly. AsyncCounter bean is a * simple counter which value should be equals to 2 at the end of the test. A supplementary test * concerns threads which execute both of AsyncCounter methods: one which * isn't annotated with @Async and another one which is annotated with it. For the first one, invoking * thread should have the same name as the main thread. For annotated method, it can't be executed in * the main thread. It must be executed asynchrounously in a new thread. **/ context.registerBeanDefinition("asyncCounter", new RootBeanDefinition(AsyncCounter.class)); String currentName = Thread.currentThread().getName(); AsyncCounter asyncCounter = context.getBean("asyncCounter", AsyncCounter.class); asyncCounter.incrementNormal(); assertTrue("Thread executing normal increment should be the same as JUnit thread but it wasn't (expected '"+currentName+"', got '"+asyncCounter.getNormalThreadName()+"')", asyncCounter.getNormalThreadName().equals(currentName)); asyncCounter.incrementAsync(); // sleep 50ms and give some time to AsyncCounter to update asyncThreadName value Thread.sleep(50); assertFalse("Thread executing @Async increment shouldn't be the same as JUnit thread but it wasn (JUnit thread '"+currentName+"', @Async thread '"+asyncCounter.getAsyncThreadName()+"')", asyncCounter.getAsyncThreadName().equals(currentName)); System.out.println("Main thread execution's name: "+currentName); System.out.println("AsyncCounter normal increment thread execution's name: "+asyncCounter.getNormalThreadName()); System.out.println("AsyncCounter @Async increment thread execution's name: "+asyncCounter.getAsyncThreadName()); assertTrue("Counter should be 2, but was "+asyncCounter.getCounter(), asyncCounter.getCounter()==2); } } class AsyncCounter { private int counter = 0; private String normalThreadName; private String asyncThreadName; public void incrementNormal() { normalThreadName = Thread.currentThread().getName(); this.counter++; } @Async public void incrementAsync() { asyncThreadName = Thread.currentThread().getName(); this.counter++; } public String getAsyncThreadName() { return asyncThreadName; } public String getNormalThreadName() { return normalThreadName; } public int getCounter() { return this.counter; } }
另外,我们需要创建新的配置文件和一个包含定时任务方法的类:
<!-- imported configuration file first --> <!-- Activates various annotations to be detected in bean classes --> <context:annotation-config /> <!-- Scans the classpath for annotated components that will be auto-registered as Spring beans. For example @Controller and @Service. Make sure to set the correct base-package--> <context:component-scan base-package="com.migo.test.schedulers" /> <task:scheduler id="taskScheduler"/> <task:executor id="taskExecutor" pool-size="40" /> <task:annotation-driven executor="taskExecutor" scheduler="taskScheduler"/>
// scheduled methods after, all are executed every 6 seconds (scheduledAtFixedRate and scheduledAtFixedDelay start to execute at // application context start, two other methods begin 6 seconds after application's context start) @Component public class TestScheduledTask { private int fixedRateCounter = 0; private int fixedDelayCounter = 0; private int initialDelayCounter = 0; private int cronCounter = 0; @Scheduled(fixedRate = 6000) public void scheduledAtFixedRate() { System.out.println("<R> Increment at fixed rate"); fixedRateCounter++; } @Scheduled(fixedDelay = 6000) public void scheduledAtFixedDelay() { System.out.println("<D> Incrementing at fixed delay"); fixedDelayCounter++; } @Scheduled(fixedDelay = 6000, initialDelay = 6000) public void scheduledWithInitialDelay() { System.out.println("<DI> Incrementing with initial delay"); initialDelayCounter++; } @Scheduled(cron = "**/6 ** ** ** ** **") public void scheduledWithCron() { System.out.println("<C> Incrementing with cron"); cronCounter++; } public int getFixedRateCounter() { return this.fixedRateCounter; } public int getFixedDelayCounter() { return this.fixedDelayCounter; } public int getInitialDelayCounter() { return this.initialDelayCounter; } public int getCronCounter() { return this.cronCounter; } }
该测试的输出:
<R> Increment at fixed rate <D> Incrementing at fixed delay Start sleeping <C> Incrementing with cron <DI> Incrementing with initial delay <R> Increment at fixed rate <D> Incrementing at fixed delay Wake up ! Main thread execution's name: main AsyncCounter normal increment thread execution's name: main AsyncCounter @Async increment thread execution's name: taskExecutor-1
本文向我们介绍了关于Spring框架另一个大家比较感兴趣的功能–定时任务。我们可以看到,与Linux CRON风格配置类似,这些任务同样可以按照固定的频率进行定时任务的设置。我们还通过例子证明了使用@Async注解的方法会在不同线程中执行。
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持呐喊教程。
声明:本文内容来源于网络,版权归原作者所有,内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:notice#nhooo.com(发邮件时,请将#更换为@)进行举报,并提供相关证据,一经查实,本站将立刻删除涉嫌侵权内容。