python实现斐波那契数列的方法示例

介绍

斐波那契数列,又称黄金分割数列,指的是这样一个数列:0、1、1、2、3、5、8、13、21、……在数学上,斐波纳契数列以如下递归的方法定义:

F(0)=0,F(1)=1,F(n)=F(n-1)+F(n-2)(n≥2,n∈N*) 。

1. 元组实现

fibs = [0, 1]
for i in range(8):
 fibs.append(fibs[-2] + fibs[-1])

这能得到一个在指定范围内的斐波那契数列的列表。

2. 迭代器实现

class Fibs:
 def __init__(self):
  self.a = 0
  self.b = 1

 def next(self):
  self.a, self.b = self.b, self.a + self.b
  return self.a

 def __iter__(self):
  return self

这将得到一个无穷的数列,可以采用如下方式访问:

fibs = Fibs()
for f in fibs:
 if f > 1000:
  print f
  break
 else:
  print f

3. 通过定制类实现

class Fib(object):
 def __getitem__(self, n):
  if isinstance(n, int):
   a, b = 1, 1
   for x in range(n):
    a, b = b, a + b
   return a
  elif isinstance(n, slice):
   start = n.start
   stop = n.stop
   a, b = 1, 1
   L = []
   for x in range(stop):
    if x >= start:
     L.append(a)
    a, b = b, a + b
   return L
  else:
   raise TypeError("Fib indices must be integers")

这样可以得到一个类似于序列的数据结构,可以通过下标来访问数据:

f = Fib()
print f[0:5]
print f[:10]

4.Python实现比较简易的斐波那契数列示例

先放一个斐波那契数列出来瞧瞧…

0 1 1 2 3 5 8 13 21 34 55 89 144 233...

首先给头两个变量赋值:

i, j = 0, 1

当然也可以这样写:

i = 0
j = 1

接着定个范围,就10000之内好了:

while i < 10000:

然后在while语句中输出i并设计逻辑:

 print i,
 i, j = j, i+j

在这里需要注意:“i, j = i, i+j”这条代码不能写成如下所示:

i = j
j = i+j

如果写成这样,j就不是前两位相加的值,而是已经被j赋过值的i和j相加的值,这样的话输出的数列会如下所示:

0 1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192

正确的整片代码如下所示:

i, j = 0, 1
while i < 10000:
 print i,
 i, j = j, i+j

最后展示运行结果:

0 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987 1597 2584 4181 6765

总结

以上就是关于利用Python实现斐波那契数列的全部内容了,希望本文的内容对大家的学习或者工作能带来一定的帮助,如果有疑问大家可以留言交流。

声明:本文内容来源于网络,版权归原作者所有,内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:notice#nhooo.com(发邮件时,请将#更换为@)进行举报,并提供相关证据,一经查实,本站将立刻删除涉嫌侵权内容。