Java 高并发八:NIO和AIO详解

IO感觉上和多线程并没有多大关系,但是NIO改变了线程在应用层面使用的方式,也解决了一些实际的困难。而AIO是异步IO和前面的系列也有点关系。在此,为了学习和记录,也写一篇文章来介绍NIO和AIO。

1. 什么是NIO

NIO是New I/O的简称,与旧式的基于流的I/O方法相对,从名字看,它表示新的一套Java I/O标 准。它是在Java 1.4中被纳入到JDK中的,并具有以下特性:

  1. NIO是基于块(Block)的,它以块为基本单位处理数据 (硬盘上存储的单位也是按Block来存储,这样性能上比基于流的方式要好一些)
  2. 为所有的原始类型提供(Buffer)缓存支持
  3. 增加通道(Channel)对象,作为新的原始 I/O 抽象
  4. 支持锁(我们在平时使用时经常能看到会出现一些.lock的文件,这说明有线程正在使用这把锁,当线程释放锁时,会把这个文件删除掉,这样其他线程才能继续拿到这把锁)和内存映射文件的文件访问接口
  5. 提供了基于Selector的异步网络I/O


所有的从通道中的读写操作,都要经过Buffer,而通道就是io的抽象,通道的另一端就是操纵的文件。

2. Buffer

Java中Buffer的实现。基本的数据类型都有它对应的Buffer

Buffer的简单使用例子:

package test;
 
import java.io.File;
import java.io.FileInputStream;
import java.nio.ByteBuffer;
import java.nio.channels.FileChannel;
 
public class Test {
 public static void main(String[] args) throws Exception {
  FileInputStream fin = new FileInputStream(new File(
    "d:\\temp_buffer.tmp"));
  FileChannel fc = fin.getChannel();
  ByteBuffer byteBuffer = ByteBuffer.allocate(1024);
  fc.read(byteBuffer);
  fc.close();
  byteBuffer.flip();//读写转换
 }
}

总结下使用的步骤是:

1. 得到Channel

2. 申请Buffer

3. 建立Channel和Buffer的读/写关系

4. 关闭

下面的例子是使用NIO来复制文件:

public static void nioCopyFile(String resource, String destination)
   throws IOException {
  FileInputStream fis = new FileInputStream(resource);
  FileOutputStream fos = new FileOutputStream(destination);
  FileChannel readChannel = fis.getChannel(); // 读文件通道
  FileChannel writeChannel = fos.getChannel(); // 写文件通道
  ByteBuffer buffer = ByteBuffer.allocate(1024); // 读入数据缓存
  while (true) {
   buffer.clear();
   int len = readChannel.read(buffer); // 读入数据
   if (len == -1) {
    break; // 读取完毕
   }
   buffer.flip();
   writeChannel.write(buffer); // 写入文件
  }
  readChannel.close();
  writeChannel.close();
 }

Buffer中有3个重要的参数:位置(position)、容量(capactiy)和上限(limit)

这里要区别下容量和上限,比如一个Buffer有10KB,那么10KB就是容量,我将5KB的文件读到Buffer中,那么上限就是5KB。

下面举个例子来理解下这3个重要的参数:

public static void main(String[] args) throws Exception {
  ByteBuffer b = ByteBuffer.allocate(15); // 15个字节大小的缓冲区
  System.out.println("limit=" + b.limit() + " capacity=" + b.capacity()
    + " position=" + b.position());
  for (int i = 0; i < 10; i++) {
   // 存入10个字节数据
   b.put((byte) i);
  }
  System.out.println("limit=" + b.limit() + " capacity=" + b.capacity()
    + " position=" + b.position());
  b.flip(); // 重置position
  System.out.println("limit=" + b.limit() + " capacity=" + b.capacity()
    + " position=" + b.position());
  for (int i = 0; i < 5; i++) {
   System.out.print(b.get());
  }
  System.out.println();
  System.out.println("limit=" + b.limit() + " capacity=" + b.capacity()
    + " position=" + b.position());
  b.flip();
  System.out.println("limit=" + b.limit() + " capacity=" + b.capacity()
    + " position=" + b.position());
 
 }

整个过程如图:

此时position从0到10,capactiy和limit不变。

该操作会重置position,通常,将buffer从写模式转换为读 模式时需要执行此方法 flip()操作不仅重置了当前的position为0,还将limit设置到当前position的位置 。

limit的意义在于,来确定哪些数据是有意义的,换句话说,从position到limit之间的数据才是有意义的数据,因为是上次操作的数据。所以flip操作往往是读写转换的意思。

意义同上。

而Buffer中大多数的方法都是去改变这3个参数来达到某些功能的:

public final Buffer rewind()

将position置零,并清除标志位(mark)

public final Buffer clear()

将position置零,同时将limit设置为capacity的大小,并清除了标志mark

public final Buffer flip()

先将limit设置到position所在位置,然后将position置零,并清除标志位mark,通常在读写转换时使用

文件映射到内存

public static void main(String[] args) throws Exception {
  RandomAccessFile raf = new RandomAccessFile("C:\\mapfile.txt", "rw");
  FileChannel fc = raf.getChannel();
  // 将文件映射到内存中
  MappedByteBuffer mbb = fc.map(FileChannel.MapMode.READ_WRITE, 0,
    raf.length());
  while (mbb.hasRemaining()) {
   System.out.print((char) mbb.get());
  }
  mbb.put(0, (byte) 98); // 修改文件
  raf.close();
 }

对MappedByteBuffer的修改就相当于修改文件本身,这样操作的速度是很快的。

3. Channel

多线程网络服务器的一般结构:

简单的多线程服务器:

public static void main(String[] args) throws Exception {
  ServerSocket echoServer = null;
  Socket clientSocket = null;
  try {
   echoServer = new ServerSocket(8000);
  } catch (IOException e) {
   System.out.println(e);
  }
  while (true) {
   try {
    clientSocket = echoServer.accept();
    System.out.println(clientSocket.getRemoteSocketAddress()
      + " connect!");
    tp.execute(new HandleMsg(clientSocket));
   } catch (IOException e) {
    System.out.println(e);
   }
  }
 }

功能就是服务器端读到什么数据,就向客户端回写什么数据。

这里的tp是一个线程池,HandleMsg是处理消息的类。

static class HandleMsg implements Runnable{ 
   省略部分信息     
   public void run(){   
    try {   
     is = new BufferedReader(new InputStreamReader(clientSocket.getInputStream())); 
     os = new PrintWriter(clientSocket.getOutputStream(), true); 
     // 从InputStream当中读取客户端所发送的数据    
     String inputLine = null;     
     long b=System. currentTimeMillis ();     
     while ((inputLine = is.readLine()) != null)
     {   
      os.println(inputLine);     
     }     
     long e=System. currentTimeMillis ();     
     System. out.println ("spend:"+(e - b)+" ms ");    
   } catch (IOException e) {     
    e.printStackTrace();    
   }finally
   { 
    关闭资源 
   }  
  } 
  }

客户端:

public static void main(String[] args) throws Exception {
  Socket client = null;
  PrintWriter writer = null;
  BufferedReader reader = null;
  try {
   client = new Socket();
   client.connect(new InetSocketAddress("localhost", 8000));
   writer = new PrintWriter(client.getOutputStream(), true);
   writer.println("Hello!");
   writer.flush();
   reader = new BufferedReader(new InputStreamReader(
     client.getInputStream()));
   System.out.println("from server: " + reader.readLine());
  } catch (Exception e) {
  } finally {
   // 省略资源关闭
  }
 }

以上的网络编程是很基本的,使用这种方式,会有一些问题:

为每一个客户端使用一个线程,如果客户端出现延时等异常,线程可能会被占用很长时间。因为数据的准备和读取都在这个线程中。此时,如果客户端数量众多,可能会消耗大量的系统资源。

解决方案:

使用非阻塞的NIO (读取数据不等待,数据准备好了再工作)

为了体现NIO使用的高效。

这里先模拟一个低效的客户端来模拟因网络而延时的情况:

private static ExecutorService tp= Executors.newCachedThreadPool(); 
  private static final int sleep_time=1000*1000*1000; 
  public static class EchoClient implements Runnable{ 
   public void run(){   
    try {    
     client = new Socket();    
     client.connect(new InetSocketAddress("localhost", 8000)); 
     writer = new PrintWriter(client.getOutputStream(), true); 
     writer.print("H");    
     LockSupport.parkNanos(sleep_time);  
     writer.print("e");   
     LockSupport.parkNanos(sleep_time);  
     writer.print("l");  
     LockSupport.parkNanos(sleep_time); 
     writer.print("l");  
     LockSupport.parkNanos(sleep_time); 
     writer.print("o");  
     LockSupport.parkNanos(sleep_time); 
     writer.print("!");   
     LockSupport.parkNanos(sleep_time); 
     writer.println();  
     writer.flush(); 
    }catch(Exception e)
    {
    }
   }
  }

服务器端输出:

spend:6000ms
spend:6000ms
spend:6000ms
spend:6001ms
spend:6002ms
spend:6002ms
spend:6002ms
spend:6002ms
spend:6003ms
spend:6003ms

因为

while ((inputLine = is.readLine()) != null)

是阻塞的,所以时间都花在等待中。

如果用NIO来处理这个问题会怎么做呢?

NIO有一个很大的特点就是:把数据准备好了再通知我

而Channel有点类似于流,一个Channel可以和文件或者网络Socket对应 。

selector是一个选择器,它可以选择某一个Channel,然后做些事情。

一个线程可以对应一个selector,而一个selector可以轮询多个Channel,而每个Channel对应了一个Socket。

与上面一个线程对应一个Socket相比,使用NIO后,一个线程可以轮询多个Socket。

当selector调用select()时,会查看是否有客户端准备好了数据。当没有数据被准备好时,select()会阻塞。平时都说NIO是非阻塞的,但是如果没有数据被准备好还是会有阻塞现象。

当有数据被准备好时,调用完select()后,会返回一个SelectionKey,SelectionKey表示在某个selector上的某个Channel的数据已经被准备好了。

只有在数据准备好时,这个Channel才会被选择。

这样NIO实现了一个线程来监控多个客户端。

而刚刚模拟的网络延迟的客户端将不会影响NIO下的线程,因为某个Socket网络延迟时,数据还未被准备好,selector是不会选择它的,而会选择其他准备好的客户端。

selectNow()与select()的区别在于,selectNow()是不阻塞的,当没有客户端准备好数据时,selectNow()不会阻塞,将返回0,有客户端准备好数据时,selectNow()返回准备好的客户端的个数。

主要代码:

package test;
 
import java.net.InetAddress;
import java.net.InetSocketAddress;
import java.net.Socket;
import java.nio.ByteBuffer;
import java.nio.channels.SelectionKey;
import java.nio.channels.Selector;
import java.nio.channels.ServerSocketChannel;
import java.nio.channels.SocketChannel;
import java.nio.channels.spi.AbstractSelector;
import java.nio.channels.spi.SelectorProvider;
import java.util.HashMap;
import java.util.Iterator;
import java.util.LinkedList;
import java.util.Map;
import java.util.Set;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
 
public class MultiThreadNIOEchoServer {
 public static Map<Socket, Long> geym_time_stat = new HashMap<Socket, Long>();
 
 class EchoClient {
  private LinkedList<ByteBuffer> outq;
 
  EchoClient() {
   outq = new LinkedList<ByteBuffer>();
  }
 
  public LinkedList<ByteBuffer> getOutputQueue() {
   return outq;
  }
 
  public void enqueue(ByteBuffer bb) {
   outq.addFirst(bb);
  }
 }
 
 class HandleMsg implements Runnable {
  SelectionKey sk;
  ByteBuffer bb;
 
  public HandleMsg(SelectionKey sk, ByteBuffer bb) {
   super();
   this.sk = sk;
   this.bb = bb;
  }
 
  @Override
  public void run() {
   // TODO Auto-generated method stub
   EchoClient echoClient = (EchoClient) sk.attachment();
   echoClient.enqueue(bb);
   sk.interestOps(SelectionKey.OP_READ | SelectionKey.OP_WRITE);
   selector.wakeup();
  }
 
 }
 
 private Selector selector;
 private ExecutorService tp = Executors.newCachedThreadPool();
 
 private void startServer() throws Exception {
  selector = SelectorProvider.provider().openSelector();
  ServerSocketChannel ssc = ServerSocketChannel.open();
  ssc.configureBlocking(false);
  InetSocketAddress isa = new InetSocketAddress(8000);
  ssc.socket().bind(isa);
  // 注册感兴趣的事件,此处对accpet事件感兴趣
  SelectionKey acceptKey = ssc.register(selector, SelectionKey.OP_ACCEPT);
  for (;;) {
   selector.select();
   Set readyKeys = selector.selectedKeys();
   Iterator i = readyKeys.iterator();
   long e = 0;
   while (i.hasNext()) {
    SelectionKey sk = (SelectionKey) i.next();
    i.remove();
    if (sk.isAcceptable()) {
     doAccept(sk);
    } else if (sk.isValid() && sk.isReadable()) {
     if (!geym_time_stat.containsKey(((SocketChannel) sk
       .channel()).socket())) {
      geym_time_stat.put(
        ((SocketChannel) sk.channel()).socket(),
        System.currentTimeMillis());
     }
     doRead(sk);
    } else if (sk.isValid() && sk.isWritable()) {
     doWrite(sk);
     e = System.currentTimeMillis();
     long b = geym_time_stat.remove(((SocketChannel) sk
       .channel()).socket());
     System.out.println("spend:" + (e - b) + "ms");
    }
   }
  }
 }
 
 private void doWrite(SelectionKey sk) {
  // TODO Auto-generated method stub
  SocketChannel channel = (SocketChannel) sk.channel();
  EchoClient echoClient = (EchoClient) sk.attachment();
  LinkedList<ByteBuffer> outq = echoClient.getOutputQueue();
  ByteBuffer bb = outq.getLast();
  try {
   int len = channel.write(bb);
   if (len == -1) {
    disconnect(sk);
    return;
   }
   if (bb.remaining() == 0) {
    outq.removeLast();
   }
  } catch (Exception e) {
   // TODO: handle exception
   disconnect(sk);
  }
  if (outq.size() == 0) {
   sk.interestOps(SelectionKey.OP_READ);
  }
 }
 
 private void doRead(SelectionKey sk) {
  // TODO Auto-generated method stub
  SocketChannel channel = (SocketChannel) sk.channel();
  ByteBuffer bb = ByteBuffer.allocate(8192);
  int len;
  try {
   len = channel.read(bb);
   if (len < 0) {
    disconnect(sk);
    return;
   }
  } catch (Exception e) {
   // TODO: handle exception
   disconnect(sk);
   return;
  }
  bb.flip();
  tp.execute(new HandleMsg(sk, bb));
 }
 
 private void disconnect(SelectionKey sk) {
  // TODO Auto-generated method stub
  //省略略干关闭操作
 }
 
 private void doAccept(SelectionKey sk) {
  // TODO Auto-generated method stub
  ServerSocketChannel server = (ServerSocketChannel) sk.channel();
  SocketChannel clientChannel;
  try {
   clientChannel = server.accept();
   clientChannel.configureBlocking(false);
   SelectionKey clientKey = clientChannel.register(selector,
     SelectionKey.OP_READ);
   EchoClient echoClinet = new EchoClient();
   clientKey.attach(echoClinet);
   InetAddress clientAddress = clientChannel.socket().getInetAddress();
   System.out.println("Accepted connection from "
     + clientAddress.getHostAddress());
  } catch (Exception e) {
   // TODO: handle exception
  }
 }
 
 public static void main(String[] args) {
  // TODO Auto-generated method stub
  MultiThreadNIOEchoServer echoServer = new MultiThreadNIOEchoServer();
  try {
   echoServer.startServer();
  } catch (Exception e) {
   // TODO: handle exception
  }
 
 }
 
}

代码仅作参考,主要的特点是,对不同事件的感兴趣来做不同的事。

当用之前模拟的那个延迟的客户端时,这次的时间消耗就在2ms到11ms之间了。性能提升是很明显的。

总结:

1. NIO会将数据准备好后,再交由应用进行处理,数据的读取/写入过程依然在应用线程中完成,只是将等待的时间剥离到单独的线程中去。

2. 节省数据准备时间(因为Selector可以复用)

5. AIO

AIO的特点:

1. 读完了再通知我

2. 不会加快IO,只是在读完后进行通知

3. 使用回调函数,进行业务处理

AIO的相关代码:

AsynchronousServerSocketChannel

server = AsynchronousServerSocketChannel.open().bind( new InetSocketAddress (PORT));
使用server上的accept方法

public abstract <A> void accept(A attachment,CompletionHandler<AsynchronousSocketChannel,? super A> handler);
CompletionHandler为回调接口,当有客户端accept之后,就做handler中的事情。

示例代码:

server.accept(null,
    new CompletionHandler<AsynchronousSocketChannel, Object>() {
     final ByteBuffer buffer = ByteBuffer.allocate(1024);
 
     public void completed(AsynchronousSocketChannel result,
       Object attachment) {
      System.out.println(Thread.currentThread().getName());
      Future<Integer> writeResult = null;
      try {
       buffer.clear();
       result.read(buffer).get(100, TimeUnit.SECONDS);
       buffer.flip();
       writeResult = result.write(buffer);
      } catch (InterruptedException | ExecutionException e) {
       e.printStackTrace();
      } catch (TimeoutException e) {
       e.printStackTrace();
      } finally {
       try {
        server.accept(null, this);
        writeResult.get();
        result.close();
       } catch (Exception e) {
        System.out.println(e.toString());
       }
      }
     }
 
     @Override
     public void failed(Throwable exc, Object attachment) {
      System.out.println("failed: " + exc);
     }
    });

这里使用了Future来实现即时返回,关于Future请参考上一篇

在理解了NIO的基础上,看AIO,区别在于AIO是等读写过程完成后再去调用回调函数。

NIO是同步非阻塞的

AIO是异步非阻塞的

由于NIO的读写过程依然在应用线程里完成,所以对于那些读写过程时间长的,NIO就不太适合。

而AIO的读写过程完成后才被通知,所以AIO能够胜任那些重量级,读写过程长的任务。

声明:本文内容来源于网络,版权归原作者所有,内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:notice#nhooo.com(发邮件时,请将#更换为@)进行举报,并提供相关证据,一经查实,本站将立刻删除涉嫌侵权内容。