C++ 数据结构完全二叉树的判断

C++ 数据结构完全二叉树的判断

完全二叉树(Complete Binary Tree):若设二叉树的深度为h,除第h层外,其他各层(1~h-1)的节点数都达到最大个数,第h层所有的节点都连续集中在最左边,这就是完全二叉树。完全二叉树由满二叉树而引起来的。对于深度为K的,有n个节点的二叉树,当且仅当每一个节点都与深度为K的满二叉树中编号从1到n的节点一一对应时称之为完全二叉树。

注意:满二叉树一定是完全二叉树,但完全二叉树不一定是满二叉树。

完全二叉树的特点:完全二叉树的效率极高,堆是一种完全二叉树或者近似完全二叉树,像十分常用的排序算法、Dijkstra算法、Prim算法等都要用堆才能优化。

判断完全二叉树的方法:从上图我们可以看出,完全二叉树可能会出现以下情况:左子树存在,右子树不存在;左子树存在,有字数存在;左、右子树都不存在;所以我们可以利用广度优先遍历(层序遍历)将二叉树进行遍历,设置一个标志位,当遇到一个空节点时,将标志位为修改;当后面在遇到有效节点并且标志位被修改时,则该二叉树不是完全二叉树。

当该二叉树为空时、修改标志位后无有效节点时,该二叉树为完全二叉树。

代码实现:

#include<iostream> 
using namespace std; 
#include<queue> 
 
template<class T> 
struct TreeNode //二叉树结点 
{ 
  T _value; 
  TreeNode<T>* _left; 
  TreeNode<T>* _right; 
  TreeNode(const T& value) 
    :_value(value) 
    , _left(NULL) 
    , _right(NULL) 
  {} 
}; 
 
 
template<class T> 
bool Is_completeTree(TreeNode<T>* node) 
{ 
  queue<TreeNode<T>*> q; 
  if (node != NULL) 
  { 
    q.push(node); 
    TreeNode<T>* cur = NULL; 
    bool flag = false; //设置标志位 
    while (!q.empty()) 
    { 
      cur = q.front(); 
      q.pop(); 
      if (cur) 
      { 
        if (flag) 
          return false; 
        q.push(cur->_left); 
        q.push(cur->_right); 
      } 
      else 
        flag = true; //修改标志位 
    } 
    return true; 
  } 
  return true; 
} 

感谢阅读,希望能帮助到大家,谢谢大家对本站的支持!

声明:本文内容来源于网络,版权归原作者所有,内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:notice#nhooo.com(发邮件时,请将#更换为@)进行举报,并提供相关证据,一经查实,本站将立刻删除涉嫌侵权内容。