浅谈Java中的hashcode方法(推荐)

哈希表这个数据结构想必大多数人都不陌生,而且在很多地方都会利用到hash表来提高查找效率。在Java的Object类中有一个方法:

public native int hashCode(); 

根据这个方法的声明可知,该方法返回一个int类型的数值,并且是本地方法,因此在Object类中并没有给出具体的实现。

为何Object类需要这样一个方法?它有什么作用呢?今天我们就来具体探讨一下hashCode方法。

一.hashCode方法的作用

对于包含容器类型的程序设计语言来说,基本上都会涉及到hashCode。在Java中也一样,hashCode方法的主要作用是为了配合基于散列的集合一起正常运行,这样的散列集合包括HashSet、HashMap以及HashTable。

为什么这么说呢?考虑一种情况,当向集合中插入对象时,如何判别在集合中是否已经存在该对象了?(注意:集合中不允许重复的元素存在)

也许大多数人都会想到调用equals方法来逐个进行比较,这个方法确实可行。但是如果集合中已经存在一万条数据或者更多的数据,如果采用equals方法去逐一比较,效率必然是一个问题。此时hashCode方法的作用就体现出来了,当集合要添加新的对象时,先调用这个对象的hashCode方法,得到对应的hashcode值,实际上在HashMap的具体实现中会用一个table保存已经存进去的对象的hashcode值,如果table中没有该hashcode值,它就可以直接存进去,不用再进行任何比较了;如果存在该hashcode值, 就调用它的equals方法与新元素进行比较,相同的话就不存了,不相同就散列其它的地址,所以这里存在一个冲突解决的问题,这样一来实际调用equals方法的次数就大大降低了,说通俗一点:Java中的hashCode方法就是根据一定的规则将与对象相关的信息(比如对象的存储地址,对象的字段等)映射成一个数值,这个数值称作为散列值。下面这段代码是java.util.HashMap的中put方法的具体实现:

public V put(K key, V value) {

    if (key == null)

      return putForNullKey(value);

    int hash = hash(key.hashCode());

    int i = indexFor(hash, table.length);

    for (Entry<K,V> e = table[i]; e != null; e = e.next) {

      Object k;

      if (e.hash == hash && ((k = e.key) == key || key.equals(k))) {

        V oldValue = e.value;

        e.value = value;

        e.recordAccess(this);

        return oldValue;

      }

    }

    modCount++;

    addEntry(hash, key, value, i);

    return null;

  } 

put方法是用来向HashMap中添加新的元素,从put方法的具体实现可知,会先调用hashCode方法得到该元素的hashCode值,然后查看table中是否存在该hashCode值,如果存在则调用equals方法重新确定是否存在该元素,如果存在,则更新value值,否则将新的元素添加到HashMap中。从这里可以看出,hashCode方法的存在是为了减少equals方法的调用次数,从而提高程序效率。

有些朋友误以为默认情况下,hashCode返回的就是对象的存储地址,事实上这种看法是不全面的,确实有些JVM在实现时是直接返回对象的存储地址,但是大多时候并不是这样,只能说可能存储地址有一定关联。下面是HotSpot JVM中生成hash散列值的实现:

static inline intptr_t get_next_hash(Thread * Self, oop obj) {

 intptr_t value = 0 ;

 if (hashCode == 0) {

   // This form uses an unguarded global Park-Miller RNG,

   // so it's possible for two threads to race and generate the same RNG.

   // On MP system we'll have lots of RW access to a global, so the

   // mechanism induces lots of coherency traffic.

   value = os::random() ;

 } else

 if (hashCode == 1) {

   // This variation has the property of being stable (idempotent)

   // between STW operations. This can be useful in some of the 1-0

   // synchronization schemes.

   intptr_t addrBits = intptr_t(obj) >> 3 ;

   value = addrBits ^ (addrBits >> 5) ^ GVars.stwRandom ;

 } else

 if (hashCode == 2) {

   value = 1 ;      // for sensitivity testing

 } else

 if (hashCode == 3) {

   value = ++GVars.hcSequence ;

 } else

 if (hashCode == 4) {

   value = intptr_t(obj) ;

 } else {

   // Marsaglia's xor-shift scheme with thread-specific state

   // This is probably the best overall implementation -- we'll

   // likely make this the default in future releases.

   unsigned t = Self->_hashStateX ;

   t ^= (t << 11) ;

   Self->_hashStateX = Self->_hashStateY ;

   Self->_hashStateY = Self->_hashStateZ ;

   Self->_hashStateZ = Self->_hashStateW ;

   unsigned v = Self->_hashStateW ;

   v = (v ^ (v >> 19)) ^ (t ^ (t >> 8)) ;

   Self->_hashStateW = v ;

   value = v ;

 }

 

 value &= markOopDesc::hash_mask;

 if (value == 0) value = 0xBAD ;

 assert (value != markOopDesc::no_hash, "invariant") ;

 TEVENT (hashCode: GENERATE) ;

 return value;

} 

该实现位于hotspot/src/share/vm/runtime/synchronizer.cpp文件下。

因此有人会说,可以直接根据hashcode值判断两个对象是否相等吗?肯定是不可以的,因为不同的对象可能会生成相同的hashcode值。虽然不能根据hashcode值判断两个对象是否相等,但是可以直接根据hashcode值判断两个对象不等,如果两个对象的hashcode值不等,则必定是两个不同的对象。如果要判断两个对象是否真正相等,必须通过equals方法。

也就是说对于两个对象,如果调用equals方法得到的结果为true,则两个对象的hashcode值必定相等;

如果equals方法得到的结果为false,则两个对象的hashcode值不一定不同;

如果两个对象的hashcode值不等,则equals方法得到的结果必定为false;

如果两个对象的hashcode值相等,则equals方法得到的结果未知。

二.equals方法和hashCode方法

在有些情况下,程序设计者在设计一个类的时候为需要重写equals方法,比如String类,但是千万要注意,在重写equals方法的同时,必须重写hashCode方法。为什么这么说呢?

下面看一个例子:

package com.cxh.test1;

import java.util.HashMap;

import java.util.HashSet;

import java.util.Set;

class People{

  private String name;

  private int age;  

  public People(String name,int age) {

    this.name = name;

    this.age = age;

  }   

  public void setAge(int age){

    this.age = age;

  }    

  @Override

  public boolean equals(Object obj) {

    // TODO Auto-generated method stub

    return this.name.equals(((People)obj).name) && this.age== ((People)obj).age;

  }

}

public class Main {

  public static void main(String[] args) {  

    People p1 = new People("Jack", 12);

    System.out.println(p1.hashCode());    

    HashMap<People, Integer> hashMap = new HashMap<People, Integer>();

    hashMap.put(p1, 1);

    System.out.println(hashMap.get(new People("Jack", 12)));

  }

} 

 

在这里我只重写了equals方法,也就说如果两个People对象,如果它的姓名和年龄相等,则认为是同一个人。

这段代码本来的意愿是想这段代码输出结果为“1”,但是事实上它输出的是“null”。为什么呢?原因就在于重写equals方法的同时忘记重写hashCode方法。

虽然通过重写equals方法使得逻辑上姓名和年龄相同的两个对象被判定为相等的对象(跟String类类似),但是要知道默认情况下,hashCode方法是将对象的存储地址进行映射。那么上述代码的输出结果为“null”就不足为奇了。原因很简单,p1指向的对象和

System.out.println(hashMap.get(new People("Jack", 12)));这句中的new People("Jack", 12)生成的是两个对象,它们的存储地址肯定不同。下面是HashMap的get方法的具体实现:

 public V get(Object key) {

    if (key == null)

      return getForNullKey();

    int hash = hash(key.hashCode());

    for (Entry<K,V> e = table[indexFor(hash, table.length)];

       e != null;

       e = e.next) {

      Object k;

      if (e.hash == hash && ((k = e.key) == key || key.equals(k)))

        return e.value;

    }

    return null;

  } 

所以在hashmap进行get操作时,因为得到的hashcdoe值不同(注意,上述代码也许在某些情况下会得到相同的hashcode值,不过这种概率比较小,因为虽然两个对象的存储地址不同也有可能得到相同的hashcode值),所以导致在get方法中for循环不会执行,直接返回null。

因此如果想上述代码输出结果为“1”,很简单,只需要重写hashCode方法,让equals方法和hashCode方法始终在逻辑上保持一致性。

package com.cxh.test1;

import java.util.HashMap;

import java.util.HashSet;

import java.util.Set; 

class People{

  private String name;

  private int age;

  public People(String name,int age) {

    this.name = name;

    this.age = age;

  }  

 public void setAge(int age){

    this.age = age;

  }  

  @Override

  public int hashCode() {

    // TODO Auto-generated method stub

    return name.hashCode()*37+age;

  } 

  @Override

  public boolean equals(Object obj) {

    // TODO Auto-generated method stub

    return this.name.equals(((People)obj).name) && this.age== ((People)obj).age;

  }

}

public class Main {

  public static void main(String[] args) {   

    People p1 = new People("Jack", 12);

    System.out.println(p1.hashCode());   

    HashMap<People, Integer> hashMap = new HashMap<People, Integer>();

    hashMap.put(p1, 1);  

    System.out.println(hashMap.get(new People("Jack", 12)));

  }

} 

这样一来的话,输出结果就为“1”了。

下面这段话摘自Effective Java一书:

在程序执行期间,只要equals方法的比较操作用到的信息没有被修改,那么对这同一个对象调用多次,hashCode方法必须始终如一地返回同一个整数。

如果两个对象根据equals方法比较是相等的,那么调用两个对象的hashCode方法必须返回相同的整数结果。

如果两个对象根据equals方法比较是不等的,则hashCode方法不一定得返回不同的整数。

对于第二条和第三条很好理解,但是第一条,很多时候就会忽略。在《Java编程思想》一书中的P495页也有同第一条类似的一段话:

“设计hashCode()时最重要的因素就是:无论何时,对同一个对象调用hashCode()都应该产生同样的值。如果在讲一个对象用put()添加进HashMap时产生一个hashCdoe值,而用get()取出时却产生了另一个hashCode值,那么就无法获取该对象了。所以如果你的hashCode方法依赖于对象中易变的数据,用户就要当心了,因为此数据发生变化时,hashCode()方法就会生成一个不同的散列码”。

下面举个例子:

package com.cxh.test1; 

import java.util.HashMap;

import java.util.HashSet;

import java.util.Set;

class People{

  private String name;

  private int age; 

  public People(String name,int age) {

    this.name = name;

    this.age = age;

  }  

  public void setAge(int age){

    this.age = age;

  } 

  @Override

  public int hashCode() {

    // TODO Auto-generated method stub

    return name.hashCode()*37+age;

  }  

  @Override

  public boolean equals(Object obj) {

    // TODO Auto-generated method stub

    return this.name.equals(((People)obj).name) && this.age== ((People)obj).age;

  }

}

public class Main {

  public static void main(String[] args) {  

    People p1 = new People("Jack", 12);

    System.out.println(p1.hashCode()); 

    HashMap<People, Integer> hashMap = new HashMap<People, Integer>();

    hashMap.put(p1, 1);

    p1.setAge(13);  

    System.out.println(hashMap.get(p1));

  }

} 

这段代码输出的结果为“null”,想必其中的原因大家应该都清楚了。

因此,在设计hashCode方法和equals方法的时候,如果对象中的数据易变,则最好在equals方法和hashCode方法中不要依赖于该字段。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持呐喊教程。

声明:本文内容来源于网络,版权归原作者所有,内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:notice#nhooo.com(发邮件时,请将#更换为@)进行举报,并提供相关证据,一经查实,本站将立刻删除涉嫌侵权内容。