pandas将list数据拆分成行或列的实现

数据

import numpy as np
import pandas as pd

data = [{'Name': '小明', 'Chinese': [70, 80], 'Math': [90, 80]},
    {'Name': '小红', 'Chinese': [70, 80, 90], 'Math': [90, 80, 70]}]
data = pd.DataFrame(data)
data


拆分成行

def split_row(data, column):
  '''拆分成行

  :param data: 原始数据
  :param column: 拆分的列名
  :type data: pandas.core.frame.DataFrame
  :type column: str
  '''
  row_len = list(map(len, data[column].values))
  rows = []
  for i in data.columns:
    if i == column:
      row = np.concatenate(data[i].values)
    else:
      row = np.repeat(data[i].values, row_len)
    rows.append(row)
  return pd.DataFrame(np.dstack(tuple(rows))[0], columns=data.columns)


split_row(data, column='Chinese')

拆分成列

from copy import deepcopy


def split_col(data, column):
  '''拆分成列

  :param data: 原始数据
  :param column: 拆分的列名
  :type data: pandas.core.frame.DataFrame
  :type column: str
  '''
  data = deepcopy(data)
  max_len = max(list(map(len, data[column].values))) # 最大长度
  new_col = data[column].apply(lambda x: x + [None]*(max_len - len(x))) # 补空值,None可换成np.nan
  new_col = np.array(new_col.tolist()).T # 转置
  for i, j in enumerate(new_col):
    data[column + str(i)] = j
  return data


split_col(data, column='Chinese')

其他情况

 1. 批量处理+不要原列

def split_col(data, columns):
  '''拆分成列

  :param data: 原始数据
  :param columns: 拆分的列名
  :type data: pandas.core.frame.DataFrame
  :type columns: list
  '''
  for c in columns:
    new_col = data.pop(c)
    max_len = max(list(map(len, new_col.values))) # 最大长度
    new_col = new_col.apply(lambda x: x + [None]*(max_len - len(x))) # 补空值,None可换成np.nan
    new_col = np.array(new_col.tolist()).T # 转置
    for i, j in enumerate(new_col):
      data[c + str(i)] = j


split_col(data, columns=['Chinese','Math'])
data

2. 带int和list数据


转成这样:

import numpy as np
import pandas as pd

data = [{'Name': '小爱', 'Chinese': 70, 'Math': 90},
    {'Name': '小明', 'Chinese': [70, 80], 'Math': [90, 80]},
    {'Name': '小红', 'Chinese': [70, 80, 90], 'Math': [90, 80, 70]}]
data = pd.DataFrame(data)

def split_col(data, columns):
  '''拆分成列

  :param data: 原始数据
  :param columns: 拆分的列名
  :type data: pandas.core.frame.DataFrame
  :type columns: list
  '''
  for c in columns:
    new_col = data.pop(c)
    max_len = max(list(map(lambda x:len(x) if isinstance(x, list) else 1, new_col.values))) # 最大长度
    new_col = new_col.apply(lambda x: x+[None]*(max_len - len(x)) if isinstance(x, list) else [x]+[None]*(max_len - 1)) # 补空值,None可换成np.nan
    new_col = np.array(new_col.tolist()).T # 转置
    for i, j in enumerate(new_col):
      data[c + str(i)] = j


split_col(data, columns=['Chinese','Math'])
data

参考文献

 Python Pandas list(列表)数据列拆分成多行的方法

10分钟了解Pandas基础知识

到此这篇关于pandas将list数据拆分成行或列的实现的文章就介绍到这了,更多相关pandas list数据拆分内容请搜索呐喊教程以前的文章或继续浏览下面的相关文章希望大家以后多多支持呐喊教程!

声明:本文内容来源于网络,版权归原作者所有,内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:notice#nhooo.com(发邮件时,请将#更换为@)进行举报,并提供相关证据,一经查实,本站将立刻删除涉嫌侵权内容。